MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  im2anan9 Unicode version

Theorem im2anan9 835
Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.)
Hypotheses
Ref Expression
im2an9.1
im2an9.2
Assertion
Ref Expression
im2anan9

Proof of Theorem im2anan9
StepHypRef Expression
1 im2an9.1 . . 3
21adantr 465 . 2
3 im2an9.2 . . 3
43adantl 466 . 2
52, 4anim12d 563 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369
This theorem is referenced by:  im2anan9r  836  ax12eq  2271  ax12el  2272  trin  4555  somo  4839  xpss12  5113  f1oun  5840  poxp  6912  soxp  6913  brecop  7423  ingru  9214  genpss  9403  genpnnp  9404  tgcl  19471  txlm  20149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator