MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadmrn Unicode version

Theorem imadmrn 5352
Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
imadmrn

Proof of Theorem imadmrn
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3112 . . . . . . 7
2 vex 3112 . . . . . . 7
31, 2opeldm 5211 . . . . . 6
43pm4.71i 632 . . . . 5
5 ancom 450 . . . . 5
64, 5bitr2i 250 . . . 4
76exbii 1667 . . 3
87abbii 2591 . 2
9 dfima3 5345 . 2
10 dfrn3 5197 . 2
118, 9, 103eqtr4i 2496 1
Colors of variables: wff setvar class
Syntax hints:  /\wa 369  =wceq 1395  E.wex 1612  e.wcel 1818  {cab 2442  <.cop 4035  domcdm 5004  rancrn 5005  "cima 5007
This theorem is referenced by:  cnvimarndm  5363  foima  5805  f1imacnv  5837  fsn2  6071  resfunexg  6137  elunirnALT  6164  fnexALT  6766  uniqs2  7392  mapsn  7480  phplem4  7719  php3  7723  jech9.3  8253  fin4en1  8710  retopbas  21267  plyeq0  22608  rnelshi  26978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-xp 5010  df-cnv 5012  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017
  Copyright terms: Public domain W3C validator