Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imainrect | Unicode version |
Description: Image of a relation restricted to a rectangular region. (Contributed by Stefan O'Rear, 19-Feb-2015.) |
Ref | Expression |
---|---|
imainrect |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5016 | . . 3 | |
2 | 1 | rneqi 5234 | . 2 |
3 | df-ima 5017 | . 2 | |
4 | df-ima 5017 | . . . . 5 | |
5 | df-res 5016 | . . . . . 6 | |
6 | 5 | rneqi 5234 | . . . . 5 |
7 | 4, 6 | eqtri 2486 | . . . 4 |
8 | 7 | ineq1i 3695 | . . 3 |
9 | cnvin 5418 | . . . . . 6 | |
10 | inxp 5140 | . . . . . . . . . 10 | |
11 | inv1 3812 | . . . . . . . . . . 11 | |
12 | incom 3690 | . . . . . . . . . . . 12 | |
13 | inv1 3812 | . . . . . . . . . . . 12 | |
14 | 12, 13 | eqtri 2486 | . . . . . . . . . . 11 |
15 | 11, 14 | xpeq12i 5026 | . . . . . . . . . 10 |
16 | 10, 15 | eqtr2i 2487 | . . . . . . . . 9 |
17 | 16 | ineq2i 3696 | . . . . . . . 8 |
18 | in32 3709 | . . . . . . . 8 | |
19 | xpindir 5142 | . . . . . . . . . . . 12 | |
20 | 19 | ineq2i 3696 | . . . . . . . . . . 11 |
21 | inass 3707 | . . . . . . . . . . 11 | |
22 | 20, 21 | eqtr4i 2489 | . . . . . . . . . 10 |
23 | 22 | ineq1i 3695 | . . . . . . . . 9 |
24 | inass 3707 | . . . . . . . . 9 | |
25 | 23, 24 | eqtri 2486 | . . . . . . . 8 |
26 | 17, 18, 25 | 3eqtr4i 2496 | . . . . . . 7 |
27 | 26 | cnveqi 5182 | . . . . . 6 |
28 | df-res 5016 | . . . . . . 7 | |
29 | cnvxp 5429 | . . . . . . . 8 | |
30 | 29 | ineq2i 3696 | . . . . . . 7 |
31 | 28, 30 | eqtr4i 2489 | . . . . . 6 |
32 | 9, 27, 31 | 3eqtr4ri 2497 | . . . . 5 |
33 | 32 | dmeqi 5209 | . . . 4 |
34 | incom 3690 | . . . . 5 | |
35 | dmres 5299 | . . . . 5 | |
36 | df-rn 5015 | . . . . . 6 | |
37 | 36 | ineq1i 3695 | . . . . 5 |
38 | 34, 35, 37 | 3eqtr4ri 2497 | . . . 4 |
39 | df-rn 5015 | . . . 4 | |
40 | 33, 38, 39 | 3eqtr4ri 2497 | . . 3 |
41 | 8, 40 | eqtr4i 2489 | . 2 |
42 | 2, 3, 41 | 3eqtr4i 2496 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 cvv 3109
i^i cin 3474 X. cxp 5002 `' ccnv 5003
dom cdm 5004 ran crn 5005 |` cres 5006
" cima 5007 |
This theorem is referenced by: ecinxp 7405 marypha1lem 7913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 |
Copyright terms: Public domain | W3C validator |