Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imainss | Unicode version |
Description: An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by NM, 11-Aug-2004.) |
Ref | Expression |
---|---|
imainss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3112 | . . . . . . . . . . 11 | |
2 | vex 3112 | . . . . . . . . . . 11 | |
3 | 1, 2 | brcnv 5190 | . . . . . . . . . 10 |
4 | 19.8a 1857 | . . . . . . . . . 10 | |
5 | 3, 4 | sylan2br 476 | . . . . . . . . 9 |
6 | 5 | ancoms 453 | . . . . . . . 8 |
7 | 6 | anim2i 569 | . . . . . . 7 |
8 | simprl 756 | . . . . . . 7 | |
9 | 7, 8 | jca 532 | . . . . . 6 |
10 | 9 | anassrs 648 | . . . . 5 |
11 | elin 3686 | . . . . . . 7 | |
12 | 2 | elima2 5348 | . . . . . . . 8 |
13 | 12 | anbi2i 694 | . . . . . . 7 |
14 | 11, 13 | bitri 249 | . . . . . 6 |
15 | 14 | anbi1i 695 | . . . . 5 |
16 | 10, 15 | sylibr 212 | . . . 4 |
17 | 16 | eximi 1656 | . . 3 |
18 | 1 | elima2 5348 | . . . . 5 |
19 | 18 | anbi1i 695 | . . . 4 |
20 | elin 3686 | . . . 4 | |
21 | 19.41v 1771 | . . . 4 | |
22 | 19, 20, 21 | 3bitr4i 277 | . . 3 |
23 | 1 | elima2 5348 | . . 3 |
24 | 17, 22, 23 | 3imtr4i 266 | . 2 |
25 | 24 | ssriv 3507 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 E. wex 1612
e. wcel 1818 i^i cin 3474 C_ wss 3475
class class class wbr 4452 `' ccnv 5003
" cima 5007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-cnv 5012 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 |
Copyright terms: Public domain | W3C validator |