MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaiun Unicode version

Theorem imaiun 6157
Description: The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
imaiun
Distinct variable group:   ,

Proof of Theorem imaiun
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3129 . . . 4
2 vex 3112 . . . . . 6
32elima3 5349 . . . . 5
43rexbii 2959 . . . 4
5 eliun 4335 . . . . . . 7
65anbi1i 695 . . . . . 6
7 r19.41v 3009 . . . . . 6
86, 7bitr4i 252 . . . . 5
98exbii 1667 . . . 4
101, 4, 93bitr4ri 278 . . 3
112elima3 5349 . . 3
12 eliun 4335 . . 3
1310, 11, 123bitr4i 277 . 2
1413eqriv 2453 1
Colors of variables: wff setvar class
Syntax hints:  /\wa 369  =wceq 1395  E.wex 1612  e.wcel 1818  E.wrex 2808  <.cop 4035  U_ciun 4330  "cima 5007
This theorem is referenced by:  imauni  6158  uniqs  7390  hsmexlem4  8830  hsmexlem5  8831  xkococnlem  20160  ismbf3d  22061  mbfimaopnlem  22062  i1fima  22085  i1fd  22088  itg1addlem5  22107  limciun  22298  sibfof  28282  eulerpartlemgh  28317  itg2addnclem2  30067  ftc1anclem6  30095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-iun 4332  df-br 4453  df-opab 4511  df-xp 5010  df-cnv 5012  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017
  Copyright terms: Public domain W3C validator