Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iman | Unicode version |
Description: Express implication in terms of conjunction. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
Ref | Expression |
---|---|
iman |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 291 | . . 3 | |
2 | 1 | imbi2i 312 | . 2 |
3 | imnan 422 | . 2 | |
4 | 2, 3 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 |
This theorem is referenced by: annim 425 pm3.24 882 xor 891 nannanOLD 1349 nic-mpALT 1505 nic-axALT 1507 rexanali 2910 difdif 3629 dfss4 3731 difin 3734 npss0 3865 ssdif0 3885 difin0ss 3894 inssdif0 3895 dfif2 3943 notzfaus 4627 dffv2 5946 tfinds 6694 domtriord 7683 inf3lem3 8068 nominpos 10800 isprm3 14226 vdwlem13 14511 vdwnn 14516 psgnunilem4 16522 efgredlem 16765 efgred 16766 ufinffr 20430 ptcmplem5 20556 nmoleub2lem2 21599 ellogdm 23020 pntpbnd 23773 cvbr2 27202 cvnbtwn2 27206 cvnbtwn3 27207 cvnbtwn4 27208 chpssati 27282 chrelat2i 27284 chrelat3 27290 df3nandALT1 29862 imnand2 29865 fdc 30238 bnj1476 33905 bnj110 33916 bnj1388 34089 bj-andnotim 34177 lpssat 34738 lssat 34741 lcvbr2 34747 lcvbr3 34748 lcvnbtwn2 34752 lcvnbtwn3 34753 cvrval2 34999 cvrnbtwn2 35000 cvrnbtwn3 35001 cvrnbtwn4 35004 atlrelat1 35046 hlrelat2 35127 dihglblem6 37067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |