Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imbi2i | Unicode version |
Description: Introduce an antecedent to both sides of a logical equivalence. This and the next three rules are useful for building up wff's around a definition, in order to make use of the definition. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
Ref | Expression |
---|---|
imbi2i.1 |
Ref | Expression |
---|---|
imbi2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi2i.1 | . . 3 | |
2 | 1 | a1i 11 | . 2 |
3 | 2 | pm5.74i 245 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184 |
This theorem is referenced by: iman 424 pm4.14 578 nan 580 pm5.32 636 anidmdbi 646 imimorb 877 pm5.6 912 nannan 1348 alimex 1652 19.36v 1762 19.36 1964 sblim 2138 sban 2140 sbhb 2182 2sb6 2188 mo2v 2289 mo2vOLD 2290 mo2vOLDOLD 2291 moabs 2315 eu1 2327 2eu6OLD 2384 r2allem 2832 r2alfOLD 2834 r3al 2837 r19.21t 2854 r19.21tOLD 2855 r19.21v 2862 ralbii 2888 r19.35 3004 reu2 3287 reu8 3295 2reu5lem3 3307 ssconb 3636 ssin 3719 difin 3734 reldisj 3870 ssundif 3911 raldifsni 4160 pwpw0 4178 pwsnALT 4244 unissb 4281 moabex 4711 dffr2 4849 dfepfr 4869 ssrel 5096 ssrel2 5098 dffr3 5374 fncnv 5657 fun11 5658 dff13 6166 marypha2lem3 7917 dfsup2 7922 wemapsolem 7996 inf2 8061 axinf2 8078 aceq1 8519 aceq0 8520 kmlem14 8564 dfackm 8567 zfac 8861 ac6n 8886 zfcndrep 9013 zfcndac 9018 axgroth6 9227 axgroth4 9231 grothprim 9233 prime 10968 raluz2 11159 fsuppmapnn0ub 12101 mptnn0fsuppr 12105 rpnnen2 13959 isprm2 14225 isprm4 14227 pgpfac1 17131 pgpfac 17135 isirred2 17350 pmatcollpw2lem 19278 isclo2 19589 lmres 19801 ist1-2 19848 is1stc2 19943 alexsubALTlem3 20549 itg2cn 22170 ellimc3 22283 plydivex 22693 vieta1 22708 dchrelbas2 23512 nmobndseqi 25694 nmobndseqiOLD 25695 cvnbtwn3 27207 elat2 27259 ssrelf 27466 funcnvmptOLD 27509 isarchi2 27729 archiabl 27742 signstfvneq0 28529 axinfprim 29078 dfon2lem9 29223 dffr4 29262 dffun10 29564 df3nandALT1 29862 df3nandALT2 29863 elicc3 30135 filnetlem4 30199 dford4 30971 pm10.541 31272 pm13.196a 31321 2sbc6g 31322 jcn 31427 fsummulc1f 31569 dvmptmulf 31734 dvmptfprodlem 31741 rmoanim 32184 ldepslinc 33110 sbidd-misc 33113 expcomdg 33269 impexpd 33283 bnj1098 33842 bnj1533 33910 bnj121 33928 bnj124 33929 bnj130 33932 bnj153 33938 bnj207 33939 bnj611 33976 bnj864 33980 bnj865 33981 bnj1000 33999 bnj978 34007 bnj1021 34022 bnj1047 34029 bnj1049 34030 bnj1090 34035 bnj1110 34038 bnj1128 34046 bnj1145 34049 bnj1171 34056 bnj1172 34057 bnj1174 34059 bnj1176 34061 bnj1280 34076 bj-sbnf 34412 lcvnbtwn3 34753 isat3 35032 cdleme25cv 36084 cdlemefrs29bpre0 36122 cdlemk35 36638 bj-ifidg 37707 bj-ifid1g 37708 bj-ifbibib 37721 bj-ifororb 37726 elintima 37765 frege60b 37932 int-rightdistd 38001 int-sqdefd 38002 int-sqgeq0d 38007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |