MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdistan Unicode version

Theorem imdistan 689
Description: Distribution of implication with conjunction. (Contributed by NM, 31-May-1999.) (Proof shortened by Wolf Lammen, 6-Dec-2012.)
Assertion
Ref Expression
imdistan

Proof of Theorem imdistan
StepHypRef Expression
1 pm5.42 548 . 2
2 impexp 446 . 2
31, 2bitr4i 252 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369
This theorem is referenced by:  imdistand  692  pm5.3  711  rmoim  3299  ss2rab  3575  marypha2lem3  7917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator