MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdistand Unicode version

Theorem imdistand 692
Description: Distribution of implication with conjunction (deduction rule). (Contributed by NM, 27-Aug-2004.)
Hypothesis
Ref Expression
imdistand.1
Assertion
Ref Expression
imdistand

Proof of Theorem imdistand
StepHypRef Expression
1 imdistand.1 . 2
2 imdistan 689 . 2
31, 2sylib 196 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369
This theorem is referenced by:  imdistanda  693  a2and  811  fconstfvOLD  6134  unblem1  7792  cfub  8650  lbzbi  11199  predpo  29264  ispridl2  30435  ispridlc  30467  lnr2i  31065  usgra2pthspth  32351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator