Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imdistand | Unicode version |
Description: Distribution of implication with conjunction (deduction rule). (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
imdistand.1 |
Ref | Expression |
---|---|
imdistand |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistand.1 | . 2 | |
2 | imdistan 689 | . 2 | |
3 | 1, 2 | sylib 196 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: imdistanda 693 a2and 811 fconstfvOLD 6134 unblem1 7792 cfub 8650 lbzbi 11199 predpo 29264 ispridl2 30435 ispridlc 30467 lnr2i 31065 usgra2pthspth 32351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |