Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imdistani | Unicode version |
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
imdistani.1 |
Ref | Expression |
---|---|
imdistani |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistani.1 | . . 3 | |
2 | 1 | anc2li 557 | . 2 |
3 | 2 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: cases2 971 nfan1 1927 2eu1OLD 2377 difrab 3771 rabsnifsb 4098 foconst 5811 elfvmptrab 5977 dffo4 6047 dffo5 6048 isofrlem 6236 onint 6630 tz7.48lem 7125 opthreg 8056 axpowndlem3OLD 8997 eltsk2g 9150 recgt1i 10467 sup2 10524 elnnnn0c 10866 elnnz1 10915 recnz 10963 eluz2b2 11183 iccsplit 11682 elfzp12 11786 1mod 12028 2swrd1eqwrdeq 12679 cos01gt0 13926 reumodprminv 14329 clatl 15746 isacs4lem 15798 isacs5lem 15799 isnzr2hash 17912 mplcoe5lem 18130 ioovolcl 21979 elply2 22593 wlkonprop 24535 trlonprop 24544 pthonprop 24579 spthonprp 24587 3oalem1 26580 elorrvc 28402 ballotlemfc0 28431 ballotlemfcc 28432 ballotlemodife 28436 ballotth 28476 wl-ax11-lem3 30027 mblfinlem1 30051 ovoliunnfl 30056 voliunnfl 30058 itg2addnclem2 30067 areacirclem5 30111 opnrebl2 30139 syldanl 30202 seqpo 30240 incsequz 30241 incsequz2 30242 ismtycnv 30298 prnc 30464 fperiodmullem 31503 climsuselem1 31613 climsuse 31614 0ellimcdiv 31655 fperdvper 31715 iblsplit 31765 stirlinglem11 31866 2reu1 32191 c0rnghm 32719 bj-eldiag2 34607 dihatexv2 37066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |