Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim12d | Unicode version |
Description: Deduction combining antecedents and consequents. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mel L. O'Cat, 30-Oct-2011.) |
Ref | Expression |
---|---|
imim12d.1 | |
imim12d.2 |
Ref | Expression |
---|---|
imim12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim12d.1 | . 2 | |
2 | imim12d.2 | . . 3 | |
3 | 2 | imim2d 52 | . 2 |
4 | 1, 3 | syl5d 67 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 |
This theorem is referenced by: imim1d 75 mo3OLD 2324 rspcimdv 3211 peano5 6723 isf34lem6 8781 inar1 9174 supsrlem 9509 uzindOLD 10982 r19.29uz 13183 o1of2 13435 o1rlimmul 13441 caucvg 13501 isprm5 14253 mrissmrid 15038 kgen2ss 20056 txlm 20149 isr0 20238 metcnpi3 21049 addcnlem 21368 nmhmcn 21603 aalioulem5 22732 xrlimcnp 23298 dmdmd 27219 mdsl0 27229 mdsl1i 27240 xrge0infss 27580 lmxrge0 27934 ghomf1olem 29034 ax8dfeq 29231 heicant 30049 ispridlc 30467 infrglb 31584 bnj517 33943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
Copyright terms: Public domain | W3C validator |