Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim1d | Unicode version |
Description: Deduction adding nested consequents. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 12-Sep-2012.) |
Ref | Expression |
---|---|
imim1d.1 |
Ref | Expression |
---|---|
imim1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1d.1 | . 2 | |
2 | idd 24 | . 2 | |
3 | 1, 2 | imim12d 74 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 |
This theorem is referenced by: imim1 76 expt 156 imbi1d 317 meredith 1472 ax13b 1805 ax12v 1855 sbequi 2116 mo3 2323 morimvOLD 2342 2mo 2373 2moOLD 2374 sstr2 3510 ssralv 3563 soss 4823 frss 4851 fvn0ssdmfun 6022 tfi 6688 nneneq 7720 wemaplem2 7993 unxpwdom2 8035 cantnfp1lem3 8120 cantnfp1lem3OLD 8146 infxpenlem 8412 axpowndlem3 8996 axpowndlem3OLD 8997 indpi 9306 fzind 10987 injresinj 11926 seqcl2 12125 seqfveq2 12129 seqshft2 12133 monoord 12137 seqsplit 12140 seqid2 12153 seqhomo 12154 seqcoll 12512 rexuzre 13185 rexico 13186 limsupbnd2 13306 rlim2lt 13320 rlim3 13321 lo1le 13474 caurcvg 13499 eulerthlem2 14312 ramtlecl 14518 sylow1lem1 16618 efgsrel 16752 elcls3 19584 cncls2 19774 cnntr 19776 filssufilg 20412 ufileu 20420 alexsubALTlem3 20549 tgpt0 20617 isucn2 20782 imasdsf1olem 20876 nmoleub2lem2 21599 ovolicc2lem3 21930 dyadmbllem 22008 dvnres 22334 rlimcnp 23295 xrlimcnp 23298 ftalem2 23347 bcmono 23552 2sqlem6 23644 eupath2 24980 mdslmd1lem1 27244 subfacp1lem6 28629 cvmliftlem7 28736 cvmliftlem10 28739 ss2mcls 28928 mclsax 28929 mettrifi 30250 ply1mulgsumlem1 32986 imbi12VD 33673 bj-exlimh 34211 bj-spimt2 34269 diaintclN 36785 dibintclN 36894 dihintcl 37071 mapdh9a 37517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
Copyright terms: Public domain | W3C validator |