MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imim2 Unicode version

Theorem imim2 53
Description: A closed form of syllogism (see syl 16). Theorem *2.05 of [WhiteheadRussell] p. 100. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 6-Sep-2012.)
Assertion
Ref Expression
imim2

Proof of Theorem imim2
StepHypRef Expression
1 id 22 . 2
21imim2d 52 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4
This theorem is referenced by:  syldd  66  imim12  97  pm3.34  586  19.41rgVD  33702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
  Copyright terms: Public domain W3C validator