Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim2 | Unicode version |
Description: A closed form of syllogism (see syl 16). Theorem *2.05 of [WhiteheadRussell] p. 100. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 6-Sep-2012.) |
Ref | Expression |
---|---|
imim2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 | |
2 | 1 | imim2d 52 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 |
This theorem is referenced by: syldd 66 imim12 97 pm3.34 586 19.41rgVD 33702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
Copyright terms: Public domain | W3C validator |