Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp42 | Unicode version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp4.1 |
Ref | Expression |
---|---|
imp42 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 | |
2 | 1 | imp32 433 | . 2 |
3 | 2 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: imp55 601 ltexprlem7 9441 iscatd 15070 isposd 15585 pospropd 15764 mulgghm2 18531 mulgghm2OLD 18534 ordtbaslem 19689 txbas 20068 grporcan 25223 chirredlem1 27309 cvxpcon 28687 cvxscon 28688 nocvxminlem 29450 rngonegmn1l 30352 prnc 30464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |