Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp4c | Unicode version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp4.1 |
Ref | Expression |
---|---|
imp4c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 | |
2 | 1 | impd 431 | . 2 |
3 | 2 | impd 431 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: imp44 596 imp5g 600 omordi 7234 omwordri 7240 omass 7248 oewordri 7260 elspansn5 26492 atcvat3i 27315 mdsymlem5 27326 sumdmdlem 27337 cvrat4 35167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |