MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp4d Unicode version

Theorem imp4d 592
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1
Assertion
Ref Expression
imp4d

Proof of Theorem imp4d
StepHypRef Expression
1 imp4.1 . . 3
21imp4a 589 . 2
32impd 431 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369
This theorem is referenced by:  imp45  597  tfrlem9  7073  uzind  10979  facdiv  12365  cvrexchlem  35143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator