MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp5d Unicode version

Theorem imp5d 599
Description: An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
Hypothesis
Ref Expression
imp5.1
Assertion
Ref Expression
imp5d

Proof of Theorem imp5d
StepHypRef Expression
1 imp5.1 . . 3
21imp31 432 . 2
32impd 431 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369
This theorem is referenced by:  bcthlem5  21767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator