Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impbid1 | Unicode version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
Ref | Expression |
---|---|
impbid1.1 | |
impbid1.2 |
Ref | Expression |
---|---|
impbid1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid1.1 | . 2 | |
2 | impbid1.2 | . . 3 | |
3 | 2 | a1i 11 | . 2 |
4 | 1, 3 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184 |
This theorem is referenced by: impbid2 204 iba 503 ibar 504 pm5.71 936 cad0 1467 19.33b 1696 19.40b 1698 19.9t 1890 ax16gb 1942 equs5 2092 sb4b 2098 2eu1 2376 2eu1OLD 2377 2eu3 2379 ceqsalgALT 3135 csbprc 3821 undif4 3883 sneqbg 4200 opthpr 4208 elpwuni 4418 eusv2i 4649 reusv2lem3 4655 reusv3 4660 reuxfr2d 4675 ordssun 4982 suc11 4986 unizlim 4999 soltmin 5411 ssxpb 5446 xp11 5447 xpcan 5448 xpcan2 5449 iotanul 5571 imadif 5668 2elresin 5697 mpteqb 5970 f1fveq 6170 f1elima 6171 f1imass 6172 fliftf 6213 sorpssuni 6589 sorpssint 6590 iunpw 6614 ssonprc 6627 onint0 6631 oa00 7227 omcan 7237 omopth2 7252 oecan 7257 nnarcl 7284 iserd 7356 ecopover 7434 map0g 7478 fundmen 7609 fopwdom 7645 onfin 7728 fineqvlem 7754 f1finf1o 7766 isfiniteg 7800 inficl 7905 tc00 8200 cardnueq0 8366 cardsdomel 8376 wdomfil 8463 wdomnumr 8466 alephsucdom 8481 cardalephex 8492 dfac12lem2 8545 cfeq0 8657 fin23lem24 8723 fin1a2lem9 8809 carden 8947 axrepnd 8990 axacndlem4 9009 gchpwdom 9069 gchina 9098 r1tskina 9181 addcanpi 9298 mulcanpi 9299 elnpi 9387 addcan 9785 addcan2 9786 neg11 9893 negreb 9907 add20 10089 mulcand 10207 cru 10553 nn0lt10b 10950 uz11 11132 eqreznegel 11196 lbzbi 11199 rpnnen1 11242 xrmaxlt 11411 xrltmin 11412 xrmaxle 11413 xrlemin 11414 xneg11 11443 xsubge0 11482 xrub 11532 elioc2 11616 elico2 11617 elicc2 11618 fzopth 11749 2ffzeq 11823 flidz 11947 expeq0 12196 sq01 12288 fz1eqb 12426 hashen1 12439 hash1snb 12479 wrdnval 12571 eqwrd 12582 wrdl1s1 12622 ccatopth 12695 ccatopth2 12696 wrdlen2 12886 cj11 12995 sqrt0 13075 abs00 13122 recan 13169 rlimdm 13374 rpnnen2 13959 0dvds 14004 dvds1 14034 alzdvds 14036 gcdeq0 14159 algcvgblem 14206 prmexpb 14258 prmreclem3 14436 4sqlem11 14473 moni 15131 grprcan 16083 grplcan 16102 grpinv11 16107 galcan 16342 sylow2a 16639 subgdisjb 16711 drngmuleq0 17419 lspsncmp 17762 fidomndrng 17956 coe1tm 18314 xrsdsreclb 18465 znidomb 18600 lmisfree 18877 istps2OLD 19422 tgdom 19480 en1top 19486 cmpfi 19908 txcmpb 20145 hmeocnvb 20275 flimcls 20486 hauspwpwf1 20488 flftg 20497 ghmcnp 20613 metrest 21027 icoopnst 21439 iocopnst 21440 ishl2 21810 vitali 22022 mbfi1fseqlem4 22125 aannenlem1 22724 perfect 23506 usgra1v 24390 is2wlk 24567 usgra2wlkspth 24621 usg2wotspth 24884 usg2spot2nb 25065 extwwlkfab 25090 grporcan 25223 grpolcan 25235 ip2eqi 25772 hial2eq 26023 eigorthi 26756 stge1i 27157 stle0i 27158 mdbr3 27216 mdbr4 27217 atsseq 27266 mdsymlem7 27328 eqvincg 27374 reuxfr3d 27388 disjunsn 27453 fpwrelmapffslem 27555 xmulcand 27617 prsdm 27896 prsrn 27897 mthmpps 28942 untangtr 29086 sltval2 29416 ordtopcon 29904 ordtopt0 29907 wl-lem-moexsb 30017 filnetlem4 30199 seqpo 30240 fphpd 30750 pellexlem3 30767 qirropth 30844 expdioph 30965 rpnnen3 30974 iotasbc 31326 2reu1 32191 2reu3 32193 rlimdmafv 32262 fzoopth 32340 2ffzoeq 32341 usgra2pthspth 32351 0ringdif 32676 islinindfis 33050 lincresunit3lem3 33075 bj-dfbi6 34156 bj-19.9htbi 34257 bj-ax16gb 34325 bj-equs5v 34332 bj-sb4bv 34338 lshpcmp 34713 lsatcmp 34728 lsatcmp2 34729 ltrneq2 35872 ltrneq 35873 tendospcanN 36750 dochlkr 37112 lcfl7N 37228 hgmap11 37632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |