Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impbid2 | Unicode version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
Ref | Expression |
---|---|
impbid2.1 | |
impbid2.2 |
Ref | Expression |
---|---|
impbid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid2.2 | . . 3 | |
2 | impbid2.1 | . . 3 | |
3 | 1, 2 | impbid1 203 | . 2 |
4 | 3 | bicomd 201 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184 |
This theorem is referenced by: biimt 335 biorf 405 biorfi 407 pm4.72 876 biort 896 bimsc1 938 ax13b 1805 cgsexg 3142 cgsex2g 3143 cgsex4g 3144 elab3gf 3251 abidnf 3268 elsnc2g 4059 difsn 4164 eqsn 4191 prel12 4207 dfnfc2 4267 intmin4 4316 dfiin2g 4363 elpw2g 4615 ord0eln0 4937 ssrel 5096 ssrel2 5098 ssrelrel 5108 releldmb 5242 relelrnb 5243 cnveqb 5467 dmsnopg 5484 relcnvtr 5532 f1ocnvb 5834 ffvresb 6062 soisores 6223 riotaclb 6295 fnoprabg 6403 difex2 6607 dfwe2 6617 ordpwsuc 6650 ordunisuc2 6679 limsssuc 6685 dfom2 6702 relcnvexb 6748 dfsmo2 7037 omord 7236 nneob 7320 pw2f1olem 7641 sucdom 7735 fieq0 7901 hartogslem1 7988 rankr1ag 8241 rankeq0b 8299 fidomtri 8395 fidomtri2 8396 isfin2-2 8720 enfin2i 8722 isfin3-2 8768 isf34lem6 8781 isfin1-2 8786 isfin1-3 8787 isfin7-2 8797 axgroth6 9227 ltsonq 9368 ltexnq 9374 znegclb 10926 rpneg 11278 nltpnft 11396 ngtmnft 11397 xrrebnd 11398 qextlt 11431 qextle 11432 iccneg 11670 fzsn 11754 fz1sbc 11783 fzofzp1b 11910 ceilidz 11979 fleqceilz 11981 hashclb 12430 hashnncl 12436 hashfun 12495 reim0b 12952 rexanre 13179 rexuzre 13185 lo1resb 13387 o1resb 13389 dvdsext 14037 pceq0 14394 pc11 14403 pcz 14404 ramtcl 14528 cshwsiun 14584 pospo 15603 oduposb 15766 cnvpsb 15843 tsrlemax 15850 issubg2 16216 issubg4 16220 ghmmhmb 16278 pmtrmvd 16481 mndodcong 16566 issubrg2 17449 lpigen 17904 cyggic 18611 ip2eq 18688 maducoeval2 19142 eltg3 19463 bastop 19483 0top 19485 iscld3 19565 isclo2 19589 cnprest 19790 dfcon2 19920 comppfsc 20033 cmphaushmeo 20301 reghaus 20326 nrmhaus 20327 fbun 20341 fsubbas 20368 ufileu 20420 uffix 20422 txflf 20507 fclsrest 20525 flimfnfcls 20529 ptcmplem2 20553 tgpt1 20616 tgpt0 20617 isngp2 21117 nrgdomn 21180 nmhmcn 21603 iscmet3 21732 limcflf 22285 ply1nzb 22523 coe11 22650 dgreq0 22662 sqf11 23413 sqff1o 23456 lgsabs1 23609 lgsquadlem2 23630 usgrafilem2 24412 cusgrafilem3 24481 iswlkg 24524 wwlkn0s 24705 isclwlkg 24755 el2wlksoton 24878 el2spthsoton 24879 vdiscusgra 24921 elghomlem2OLD 25364 nmobndi 25690 hmopadj2 26860 mdslle1i 27236 mdslle2i 27237 relfi 27459 ssrelf 27466 eldmgm 28564 rescon 28691 cvmsval 28711 elmrsubrn 28880 funsseq 29199 brcolinear 29709 outsideofeu 29781 lineunray 29797 wl-sb5nae 30007 wl-ax11-lem2 30026 heicant 30049 nn0prpw 30141 cover2 30204 eqfnun 30212 isbndx 30278 isbnd2 30279 equivbnd2 30288 prdsbnd2 30291 isdrngo3 30362 ceqsex3OLD 30601 wepwsolem 30987 pm11.71 31303 pm14.122b 31330 pm14.123b 31333 iotavalb 31337 climreeq 31619 rexrsb 32174 reuan 32185 afv0nbfvbi 32236 dfafn5b 32246 fundmfibi 32311 f1dmvrnfibi 32312 elfz2z 32331 usgfislem2 32445 usgfisALTlem2 32449 bnj1173 34058 bj-19.3t 34252 bj-sb3b 34390 bj-sngltag 34541 bj-elid2 34600 bj-inftyexpiinj 34612 riotaclbgBAD 34685 lssatle 34740 opcon3b 34921 cdlemk33N 36635 cdlemk34 36636 rp-fakeimass 37736 intimag 37770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |