MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impbid21d Unicode version

Theorem impbid21d 190
Description: Deduce an equivalence from two implications. (Contributed by Wolf Lammen, 12-May-2013.)
Hypotheses
Ref Expression
impbid21d.1
impbid21d.2
Assertion
Ref Expression
impbid21d

Proof of Theorem impbid21d
StepHypRef Expression
1 impbid21d.1 . . 3
21a1i 11 . 2
3 impbid21d.2 . . 3
43a1d 25 . 2
52, 4impbidd 189 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184
This theorem is referenced by:  impbid  191  pm5.1im  238  rp-fakenanass  37739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
  Copyright terms: Public domain W3C validator