MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impbidd Unicode version

Theorem impbidd 189
Description: Deduce an equivalence from two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Hypotheses
Ref Expression
impbidd.1
impbidd.2
Assertion
Ref Expression
impbidd

Proof of Theorem impbidd
StepHypRef Expression
1 impbidd.1 . 2
2 impbidd.2 . 2
3 bi3 187 . 2
41, 2, 3syl6c 64 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184
This theorem is referenced by:  impbid21d  190  pm5.74  244  seglecgr12  29761  prtlem18  30618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
  Copyright terms: Public domain W3C validator