MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impcon4bid Unicode version

Theorem impcon4bid 205
Description: A variation on impbid 191 with contraposition. (Contributed by Jeff Hankins, 3-Jul-2009.)
Hypotheses
Ref Expression
impcon4bid.1
impcon4bid.2
Assertion
Ref Expression
impcon4bid

Proof of Theorem impcon4bid
StepHypRef Expression
1 impcon4bid.1 . 2
2 impcon4bid.2 . . 3
32con4d 105 . 2
41, 3impbid 191 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184
This theorem is referenced by:  con4bid  293  soisoi  6224  isomin  6233  alephdom  8483  nn0n0n1ge2b  10885  om2uzlt2i  12062  sadcaddlem  14107  isprm5  14253  pcdvdsb  14392  cvgdvgrat  31194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
  Copyright terms: Public domain W3C validator