Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impcon4bid | Unicode version |
Description: A variation on impbid 191 with contraposition. (Contributed by Jeff Hankins, 3-Jul-2009.) |
Ref | Expression |
---|---|
impcon4bid.1 | |
impcon4bid.2 |
Ref | Expression |
---|---|
impcon4bid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impcon4bid.1 | . 2 | |
2 | impcon4bid.2 | . . 3 | |
3 | 2 | con4d 105 | . 2 |
4 | 1, 3 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 |
This theorem is referenced by: con4bid 293 soisoi 6224 isomin 6233 alephdom 8483 nn0n0n1ge2b 10885 om2uzlt2i 12062 sadcaddlem 14107 isprm5 14253 pcdvdsb 14392 cvgdvgrat 31194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |