Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > in32 | Unicode version |
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
in32 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 3707 | . 2 | |
2 | in12 3708 | . 2 | |
3 | incom 3690 | . 2 | |
4 | 1, 2, 3 | 3eqtri 2490 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 i^i cin 3474 |
This theorem is referenced by: in13 3710 inrot 3712 wefrc 4878 imainrect 5453 fpwwe2 9042 incexclem 13648 ressress 14694 kgeni 20038 kgencn3 20059 fclsrest 20525 voliunlem1 21960 sspred 29252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 |
Copyright terms: Public domain | W3C validator |