Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inab | Unicode version |
Description: Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
inab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sban 2140 | . . 3 | |
2 | df-clab 2443 | . . 3 | |
3 | df-clab 2443 | . . . 4 | |
4 | df-clab 2443 | . . . 4 | |
5 | 3, 4 | anbi12i 697 | . . 3 |
6 | 1, 2, 5 | 3bitr4ri 278 | . 2 |
7 | 6 | ineqri 3691 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
[ wsb 1739 e. wcel 1818 { cab 2442
i^i cin 3474 |
This theorem is referenced by: inrab 3769 inrab2 3770 dfrab3 3772 orduniss2 6668 ssenen 7711 hashf1lem2 12505 ballotlem2 28427 dfiota3 29573 ptrest 30048 diophin 30706 bj-inrab 34495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 |
Copyright terms: Public domain | W3C validator |