Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inatsk | Unicode version |
Description: for a strongly inaccessible cardinal is a Tarski class. (Contributed by Mario Carneiro, 8-Jun-2013.) |
Ref | Expression |
---|---|
inatsk |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inawina 9089 | . . . . . 6 | |
2 | winaon 9087 | . . . . . . . . . 10 | |
3 | winalim 9094 | . . . . . . . . . 10 | |
4 | r1lim 8211 | . . . . . . . . . 10 | |
5 | 2, 3, 4 | syl2anc 661 | . . . . . . . . 9 |
6 | 5 | eleq2d 2527 | . . . . . . . 8 |
7 | eliun 4335 | . . . . . . . 8 | |
8 | 6, 7 | syl6bb 261 | . . . . . . 7 |
9 | onelon 4908 | . . . . . . . . . . 11 | |
10 | 2, 9 | sylan 471 | . . . . . . . . . 10 |
11 | r1pw 8284 | . . . . . . . . . 10 | |
12 | 10, 11 | syl 16 | . . . . . . . . 9 |
13 | limsuc 6684 | . . . . . . . . . . . . 13 | |
14 | 3, 13 | syl 16 | . . . . . . . . . . . 12 |
15 | r1ord2 8220 | . . . . . . . . . . . . 13 | |
16 | 2, 15 | syl 16 | . . . . . . . . . . . 12 |
17 | 14, 16 | sylbid 215 | . . . . . . . . . . 11 |
18 | 17 | imp 429 | . . . . . . . . . 10 |
19 | 18 | sseld 3502 | . . . . . . . . 9 |
20 | 12, 19 | sylbid 215 | . . . . . . . 8 |
21 | 20 | rexlimdva 2949 | . . . . . . 7 |
22 | 8, 21 | sylbid 215 | . . . . . 6 |
23 | 1, 22 | syl 16 | . . . . 5 |
24 | 23 | imp 429 | . . . 4 |
25 | elssuni 4279 | . . . . 5 | |
26 | r1tr2 8216 | . . . . 5 | |
27 | 25, 26 | syl6ss 3515 | . . . 4 |
28 | 24, 27 | jccil 540 | . . 3 |
29 | 28 | ralrimiva 2871 | . 2 |
30 | 1, 2 | syl 16 | . . . . . . . . 9 |
31 | r1suc 8209 | . . . . . . . . . 10 | |
32 | 31 | eleq2d 2527 | . . . . . . . . 9 |
33 | 30, 32 | syl 16 | . . . . . . . 8 |
34 | rankr1ai 8237 | . . . . . . . 8 | |
35 | 33, 34 | syl6bir 229 | . . . . . . 7 |
36 | 35 | imp 429 | . . . . . 6 |
37 | fvex 5881 | . . . . . . 7 | |
38 | 37 | elsuc 4952 | . . . . . 6 |
39 | 36, 38 | sylib 196 | . . . . 5 |
40 | 39 | orcomd 388 | . . . 4 |
41 | fvex 5881 | . . . . . . . 8 | |
42 | elpwi 4021 | . . . . . . . . 9 | |
43 | 42 | ad2antlr 726 | . . . . . . . 8 |
44 | ssdomg 7581 | . . . . . . . 8 | |
45 | 41, 43, 44 | mpsyl 63 | . . . . . . 7 |
46 | rankcf 9176 | . . . . . . . . . 10 | |
47 | fveq2 5871 | . . . . . . . . . . . 12 | |
48 | elina 9086 | . . . . . . . . . . . . 13 | |
49 | 48 | simp2bi 1012 | . . . . . . . . . . . 12 |
50 | 47, 49 | sylan9eqr 2520 | . . . . . . . . . . 11 |
51 | 50 | breq2d 4464 | . . . . . . . . . 10 |
52 | 46, 51 | mtbii 302 | . . . . . . . . 9 |
53 | inar1 9174 | . . . . . . . . . . 11 | |
54 | sdomentr 7671 | . . . . . . . . . . . 12 | |
55 | 54 | expcom 435 | . . . . . . . . . . 11 |
56 | 53, 55 | syl 16 | . . . . . . . . . 10 |
57 | 56 | adantr 465 | . . . . . . . . 9 |
58 | 52, 57 | mtod 177 | . . . . . . . 8 |
59 | 58 | adantlr 714 | . . . . . . 7 |
60 | bren2 7566 | . . . . . . 7 | |
61 | 45, 59, 60 | sylanbrc 664 | . . . . . 6 |
62 | 61 | ex 434 | . . . . 5 |
63 | r1elwf 8235 | . . . . . . . . 9 | |
64 | 33, 63 | syl6bir 229 | . . . . . . . 8 |
65 | 64 | imp 429 | . . . . . . 7 |
66 | r1fnon 8206 | . . . . . . . . . 10 | |
67 | fndm 5685 | . . . . . . . . . 10 | |
68 | 66, 67 | ax-mp 5 | . . . . . . . . 9 |
69 | 30, 68 | syl6eleqr 2556 | . . . . . . . 8 |
70 | 69 | adantr 465 | . . . . . . 7 |
71 | rankr1ag 8241 | . . . . . . 7 | |
72 | 65, 70, 71 | syl2anc 661 | . . . . . 6 |
73 | 72 | biimprd 223 | . . . . 5 |
74 | 62, 73 | orim12d 838 | . . . 4 |
75 | 40, 74 | mpd 15 | . . 3 |
76 | 75 | ralrimiva 2871 | . 2 |
77 | eltsk2g 9150 | . . 3 | |
78 | 41, 77 | ax-mp 5 | . 2 |
79 | 29, 76, 78 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
A. wral 2807 E. wrex 2808 cvv 3109
C_ wss 3475 c0 3784 ~P cpw 4012 U. cuni 4249
U_ ciun 4330 class class class wbr 4452
con0 4883 Lim wlim 4884 suc csuc 4885
dom cdm 5004 " cima 5007 Fn wfn 5588
` cfv 5593 cen 7533 cdom 7534 csdm 7535 cr1 8201
crnk 8202 ccf 8339 cwina 9081 cina 9082 ctsk 9147 |
This theorem is referenced by: r1omtsk 9178 r1tskina 9181 grutsk 9221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-ac2 8864 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-iin 4333 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-oi 7956 df-r1 8203 df-rank 8204 df-card 8341 df-cf 8343 df-acn 8344 df-ac 8518 df-wina 9083 df-ina 9084 df-tsk 9148 |
Copyright terms: Public domain | W3C validator |