Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indexfi | Unicode version |
Description: If for every element of a finite indexing set there exists a corresponding element of another set , then there exists a finite subset of consisting only of those elements which are indexed by . Proven without the Axiom of Choice, unlike indexdom 30225. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
indexfi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1707 | . . . . . 6 | |
2 | nfsbc1v 3347 | . . . . . 6 | |
3 | sbceq1a 3338 | . . . . . 6 | |
4 | 1, 2, 3 | cbvrex 3081 | . . . . 5 |
5 | 4 | ralbii 2888 | . . . 4 |
6 | dfsbcq 3329 | . . . . 5 | |
7 | 6 | ac6sfi 7784 | . . . 4 |
8 | 5, 7 | sylan2b 475 | . . 3 |
9 | simpll 753 | . . . . 5 | |
10 | ffn 5736 | . . . . . . 7 | |
11 | 10 | ad2antrl 727 | . . . . . 6 |
12 | dffn4 5806 | . . . . . 6 | |
13 | 11, 12 | sylib 196 | . . . . 5 |
14 | fofi 7826 | . . . . 5 | |
15 | 9, 13, 14 | syl2anc 661 | . . . 4 |
16 | frn 5742 | . . . . 5 | |
17 | 16 | ad2antrl 727 | . . . 4 |
18 | fnfvelrn 6028 | . . . . . . . . 9 | |
19 | 10, 18 | sylan 471 | . . . . . . . 8 |
20 | rspesbca 3419 | . . . . . . . . 9 | |
21 | 20 | ex 434 | . . . . . . . 8 |
22 | 19, 21 | syl 16 | . . . . . . 7 |
23 | 22 | ralimdva 2865 | . . . . . 6 |
24 | 23 | imp 429 | . . . . 5 |
25 | 24 | adantl 466 | . . . 4 |
26 | simpr 461 | . . . . . . . 8 | |
27 | simprr 757 | . . . . . . . . . 10 | |
28 | nfv 1707 | . . . . . . . . . . 11 | |
29 | nfsbc1v 3347 | . . . . . . . . . . 11 | |
30 | fveq2 5871 | . . . . . . . . . . . . 13 | |
31 | 30 | sbceq1d 3332 | . . . . . . . . . . . 12 |
32 | sbceq1a 3338 | . . . . . . . . . . . 12 | |
33 | 31, 32 | bitrd 253 | . . . . . . . . . . 11 |
34 | 28, 29, 33 | cbvral 3080 | . . . . . . . . . 10 |
35 | 27, 34 | sylib 196 | . . . . . . . . 9 |
36 | 35 | r19.21bi 2826 | . . . . . . . 8 |
37 | rspesbca 3419 | . . . . . . . 8 | |
38 | 26, 36, 37 | syl2anc 661 | . . . . . . 7 |
39 | 38 | ralrimiva 2871 | . . . . . 6 |
40 | dfsbcq 3329 | . . . . . . . . 9 | |
41 | 40 | rexbidv 2968 | . . . . . . . 8 |
42 | 41 | ralrn 6034 | . . . . . . 7 |
43 | 11, 42 | syl 16 | . . . . . 6 |
44 | 39, 43 | mpbird 232 | . . . . 5 |
45 | nfv 1707 | . . . . . 6 | |
46 | nfcv 2619 | . . . . . . 7 | |
47 | 46, 2 | nfrex 2920 | . . . . . 6 |
48 | 3 | rexbidv 2968 | . . . . . 6 |
49 | 45, 47, 48 | cbvral 3080 | . . . . 5 |
50 | 44, 49 | sylibr 212 | . . . 4 |
51 | sseq1 3524 | . . . . . 6 | |
52 | rexeq 3055 | . . . . . . 7 | |
53 | 52 | ralbidv 2896 | . . . . . 6 |
54 | raleq 3054 | . . . . . 6 | |
55 | 51, 53, 54 | 3anbi123d 1299 | . . . . 5 |
56 | 55 | rspcev 3210 | . . . 4 |
57 | 15, 17, 25, 50, 56 | syl13anc 1230 | . . 3 |
58 | 8, 57 | exlimddv 1726 | . 2 |
59 | 58 | 3adant2 1015 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
E. wex 1612 e. wcel 1818 A. wral 2807
E. wrex 2808 [. wsbc 3327 C_ wss 3475
ran crn 5005 Fn wfn 5588 --> wf 5589
-onto-> wfo 5591
` cfv 5593 cfn 7536 |
This theorem is referenced by: filbcmb 30231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-1o 7149 df-er 7330 df-en 7537 df-dom 7538 df-fin 7540 |
Copyright terms: Public domain | W3C validator |