Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indi | Unicode version |
Description: Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
indi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andi 867 | . . . 4 | |
2 | elin 3686 | . . . . 5 | |
3 | elin 3686 | . . . . 5 | |
4 | 2, 3 | orbi12i 521 | . . . 4 |
5 | 1, 4 | bitr4i 252 | . . 3 |
6 | elun 3644 | . . . 4 | |
7 | 6 | anbi2i 694 | . . 3 |
8 | elun 3644 | . . 3 | |
9 | 5, 7, 8 | 3bitr4i 277 | . 2 |
10 | 9 | ineqri 3691 | 1 |
Colors of variables: wff setvar class |
Syntax hints: \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 u. cun 3473
i^i cin 3474 |
This theorem is referenced by: indir 3745 difindi 3751 undisj2 3879 disjssun 3884 difdifdir 3915 disjpr2 4092 diftpsn3 4168 resundi 5292 fresaun 5761 elfiun 7910 unxpwdom 8036 kmlem2 8552 cdainf 8593 ackbij1lem1 8621 ackbij1lem2 8622 ssxr 9675 incexclem 13648 bitsinv1 14092 bitsinvp1 14099 bitsres 14123 paste 19795 unmbl 21948 ovolioo 21978 uniioombllem4 21995 volcn 22015 ellimc2 22281 lhop2 22416 ex-in 25146 eulerpartgbij 28311 asindmre 30102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 df-in 3482 |
Copyright terms: Public domain | W3C validator |