MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indif Unicode version

Theorem indif 3739
Description: Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
indif

Proof of Theorem indif
StepHypRef Expression
1 dfin4 3737 . 2
2 dfin4 3737 . . 3
32difeq2i 3618 . 2
4 difin 3734 . 2
51, 3, 43eqtr2i 2492 1
Colors of variables: wff setvar class
Syntax hints:  =wceq 1395  \cdif 3472  i^icin 3474
This theorem is referenced by:  resdif  5841  kmlem11  8561  psgndiflemB  18636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rab 2816  df-v 3111  df-dif 3478  df-in 3482  df-ss 3489
  Copyright terms: Public domain W3C validator