Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indifdir | Unicode version |
Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.) |
Ref | Expression |
---|---|
indifdir |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.24 882 | . . . . . . . 8 | |
2 | 1 | intnan 914 | . . . . . . 7 |
3 | anass 649 | . . . . . . 7 | |
4 | 2, 3 | mtbir 299 | . . . . . 6 |
5 | 4 | biorfi 407 | . . . . 5 |
6 | an32 798 | . . . . 5 | |
7 | andi 867 | . . . . 5 | |
8 | 5, 6, 7 | 3bitr4i 277 | . . . 4 |
9 | ianor 488 | . . . . 5 | |
10 | 9 | anbi2i 694 | . . . 4 |
11 | 8, 10 | bitr4i 252 | . . 3 |
12 | elin 3686 | . . . 4 | |
13 | eldif 3485 | . . . . 5 | |
14 | 13 | anbi1i 695 | . . . 4 |
15 | 12, 14 | bitri 249 | . . 3 |
16 | eldif 3485 | . . . 4 | |
17 | elin 3686 | . . . . 5 | |
18 | elin 3686 | . . . . . 6 | |
19 | 18 | notbii 296 | . . . . 5 |
20 | 17, 19 | anbi12i 697 | . . . 4 |
21 | 16, 20 | bitri 249 | . . 3 |
22 | 11, 15, 21 | 3bitr4i 277 | . 2 |
23 | 22 | eqriv 2453 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
\ cdif 3472 i^i cin 3474 |
This theorem is referenced by: fresaun 5761 uniioombllem4 21995 preddif 29271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-dif 3478 df-in 3482 |
Copyright terms: Public domain | W3C validator |