MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indifdir Unicode version

Theorem indifdir 3753
Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.)
Assertion
Ref Expression
indifdir

Proof of Theorem indifdir
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 pm3.24 882 . . . . . . . 8
21intnan 914 . . . . . . 7
3 anass 649 . . . . . . 7
42, 3mtbir 299 . . . . . 6
54biorfi 407 . . . . 5
6 an32 798 . . . . 5
7 andi 867 . . . . 5
85, 6, 73bitr4i 277 . . . 4
9 ianor 488 . . . . 5
109anbi2i 694 . . . 4
118, 10bitr4i 252 . . 3
12 elin 3686 . . . 4
13 eldif 3485 . . . . 5
1413anbi1i 695 . . . 4
1512, 14bitri 249 . . 3
16 eldif 3485 . . . 4
17 elin 3686 . . . . 5
18 elin 3686 . . . . . 6
1918notbii 296 . . . . 5
2017, 19anbi12i 697 . . . 4
2116, 20bitri 249 . . 3
2211, 15, 213bitr4i 277 . 2
2322eqriv 2453 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  \/wo 368  /\wa 369  =wceq 1395  e.wcel 1818  \cdif 3472  i^icin 3474
This theorem is referenced by:  fresaun  5761  uniioombllem4  21995  preddif  29271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-dif 3478  df-in 3482
  Copyright terms: Public domain W3C validator