Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indstr2 | Unicode version |
Description: Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.) |
Ref | Expression |
---|---|
indstr2.1 | |
indstr2.2 | |
indstr2.3 | |
indstr2.4 |
Ref | Expression |
---|---|
indstr2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indstr2.2 | . 2 | |
2 | elnn1uz2 11187 | . . 3 | |
3 | indstr2.3 | . . . . 5 | |
4 | nnnlt1 10591 | . . . . . . . . . . 11 | |
5 | 4 | adantl 466 | . . . . . . . . . 10 |
6 | breq2 4456 | . . . . . . . . . . 11 | |
7 | 6 | adantr 465 | . . . . . . . . . 10 |
8 | 5, 7 | mtbird 301 | . . . . . . . . 9 |
9 | 8 | pm2.21d 106 | . . . . . . . 8 |
10 | 9 | ralrimiva 2871 | . . . . . . 7 |
11 | pm5.5 336 | . . . . . . 7 | |
12 | 10, 11 | syl 16 | . . . . . 6 |
13 | indstr2.1 | . . . . . 6 | |
14 | 12, 13 | bitrd 253 | . . . . 5 |
15 | 3, 14 | mpbiri 233 | . . . 4 |
16 | indstr2.4 | . . . 4 | |
17 | 15, 16 | jaoi 379 | . . 3 |
18 | 2, 17 | sylbi 195 | . 2 |
19 | 1, 18 | indstr 11179 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
class class class wbr 4452 ` cfv 5593
1 c1 9514 clt 9649 cn 10561 2 c2 10610 cuz 11110 |
This theorem is referenced by: nn0prpwlem 30140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 |
Copyright terms: Public domain | W3C validator |