Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq12d | Unicode version |
Description: Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ineq1d.1 | |
ineq12d.2 |
Ref | Expression |
---|---|
ineq12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1d.1 | . 2 | |
2 | ineq12d.2 | . 2 | |
3 | ineq12 3694 | . 2 | |
4 | 1, 2, 3 | syl2anc 661 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
i^i cin 3474 |
This theorem is referenced by: csbin 3860 csbingOLD 3861 funprg 5642 funtpg 5643 offval 6547 ofrfval 6548 oev2 7192 isf32lem7 8760 ressval 14684 invffval 15152 invfval 15153 oppcinv 15170 isps 15832 dmdprd 17029 dprddisj 17042 dprdf1o 17079 dmdprdsplit2lem 17094 dmdprdpr 17098 pgpfaclem1 17132 isunit 17306 dfrhm2 17366 isrhm 17370 2idlval 17881 aspval 17977 ressmplbas2 18117 pjfval 18737 iscon 19914 consuba 19921 ptbasin 20078 ptclsg 20116 qtopval 20196 rnelfmlem 20453 trust 20732 isnmhm 21253 uniioombllem2a 21991 dyaddisjlem 22004 dyaddisj 22005 i1faddlem 22100 i1fmullem 22101 limcflf 22285 ispth 24570 1pthonlem2 24592 2pthlem2 24598 constr2pth 24603 constr3pthlem3 24657 frisusgranb 24997 2spotdisj 25061 chocin 26413 cmbr3 26526 pjoml3 26530 fh1 26536 xppreima2 27488 hauseqcn 27877 prsssdm 27899 ordtrestNEW 27903 ordtrest2NEW 27905 cndprobval 28372 ballotlemfrc 28465 msrval 28898 msrf 28902 ismfs 28909 predeq123 29245 itg2addnclem2 30067 clsun 30146 heiborlem4 30310 heiborlem6 30312 heiborlem10 30316 aomclem8 31007 dvsinax 31708 dvcosax 31723 usgra2pthspth 32351 isofn 32567 dfiso2 32568 zerooval 32605 rhmval 32725 bnj1421 34098 pmodl42N 35575 polfvalN 35628 poldmj1N 35652 pmapj2N 35653 pnonsingN 35657 psubclinN 35672 poml4N 35677 osumcllem9N 35688 trnfsetN 35880 diainN 36784 djaffvalN 36860 djafvalN 36861 djajN 36864 dihmeetcl 37072 dihmeet2 37073 dochnoncon 37118 djhffval 37123 djhfval 37124 djhlj 37128 dochdmm1 37137 lclkrlem2g 37240 lclkrlem2v 37255 lcfrlem21 37290 lcfrlem24 37293 mapdunirnN 37377 baerlem5amN 37443 baerlem5bmN 37444 baerlem5abmN 37445 mapdheq4lem 37458 mapdh6lem1N 37460 mapdh6lem2N 37461 hdmap1l6lem1 37535 hdmap1l6lem2 37536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 |
Copyright terms: Public domain | W3C validator |