Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq12i | Unicode version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
ineq1i.1 | |
ineq12i.2 |
Ref | Expression |
---|---|
ineq12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 | |
2 | ineq12i.2 | . 2 | |
3 | ineq12 3694 | . 2 | |
4 | 1, 2, 3 | mp2an 672 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 i^i cin 3474 |
This theorem is referenced by: undir 3746 difundi 3749 difindir 3752 inrab 3769 inrab2 3770 dfif4 3956 dfif5 3957 inxp 5140 resindi 5294 resindir 5295 rnin 5420 inimass 5427 funtp 5645 orduniss2 6668 offres 6795 fodomr 7688 wemapwe 8160 wemapweOLD 8161 explecnv 13676 psssdm2 15845 ablfacrp 17117 pjfval2 18740 ofco2 18953 iundisj2 21959 lejdiri 26457 cmbr3i 26518 nonbooli 26569 5oai 26579 3oalem5 26584 mayetes3i 26648 mdexchi 27254 disjpreima 27445 disjxpin 27447 iundisj2f 27449 xppreima 27487 iundisj2fi 27602 xpinpreima 27888 xpinpreima2 27889 ordtcnvNEW 27902 predin 29269 pprodcnveq 29533 dfiota3 29573 ptrest 30048 ftc1anclem6 30095 dnwech 30994 fgraphopab 31170 onfrALTlem5 33314 onfrALTlem4 33315 onfrALTlem5VD 33685 onfrALTlem4VD 33686 bj-inrab 34495 cotr3 37788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 |
Copyright terms: Public domain | W3C validator |