Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inex1g | Unicode version |
Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
inex1g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 3692 | . . 3 | |
2 | 1 | eleq1d 2526 | . 2 |
3 | vex 3112 | . . 3 | |
4 | 3 | inex1 4593 | . 2 |
5 | 2, 4 | vtoclg 3167 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 cvv 3109
i^i cin 3474 |
This theorem is referenced by: onin 4914 dmresexg 5301 offval 6547 offval3 6794 onsdominel 7686 ssenen 7711 inelfi 7898 fiin 7902 tskwe 8352 dfac8b 8433 ac10ct 8436 infpwfien 8464 fictb 8646 canthnum 9048 gruina 9217 ressinbas 14693 ressress 14694 qusin 14941 catcbas 15424 fpwipodrs 15794 psss 15844 gsumzres 16914 gsumzresOLD 16918 eltg 19458 eltg3 19463 ntrval 19537 restco 19665 restfpw 19680 ordtrest 19703 ordtrest2lem 19704 ordtrest2 19705 cnrmi 19861 restcnrm 19863 kgeni 20038 tsmsfbas 20626 eltsms 20631 tsmsresOLD 20645 tsmsres 20646 caussi 21736 causs 21737 disjdifprg2 27437 sigainb 28136 eulerpartlemgs2 28319 sseqval 28327 cvmsss2 28719 epsetlike 29274 ontgval 29896 fin2so 30040 fnemeet2 30185 elrfi 30626 fourierdlem71 31960 fourierdlem80 31969 dfrngc2 32780 rnghmsscmap2 32781 rngcbasOLD 32791 dfringc2 32826 rhmsscmap2 32827 rhmsscrnghm 32834 rngcresringcat 32838 ringcbasOLD 32854 srhmsubc 32884 fldc 32891 fldhmsubc 32892 rngcrescrhm 32893 srhmsubcOLD 32903 fldcOLD 32910 fldhmsubcOLD 32911 rngcrescrhmOLD 32912 bnj1177 34062 bj-diagval 34605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 |
Copyright terms: Public domain | W3C validator |