Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf0 | Unicode version |
Description: Our Axiom of Infinity derived from existence of omega. The proof shows that the especially contrived class " " exists, is a subset of its union, and contains a given set (and thus is nonempty). Thus, it provides an example demonstrating that a set exists with the necessary properties demanded by ax-inf 8076. (Contributed by NM, 15-Oct-1996.) |
Ref | Expression |
---|---|
inf0.1 |
Ref | Expression |
---|---|
inf0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3112 | . . . 4 | |
2 | fr0g 7120 | . . . 4 | |
3 | 1, 2 | ax-mp 5 | . . 3 |
4 | frfnom 7119 | . . . 4 | |
5 | peano1 6719 | . . . 4 | |
6 | fnfvelrn 6028 | . . . 4 | |
7 | 4, 5, 6 | mp2an 672 | . . 3 |
8 | 3, 7 | eqeltrri 2542 | . 2 |
9 | fvelrnb 5920 | . . . . 5 | |
10 | 4, 9 | ax-mp 5 | . . . 4 |
11 | fvex 5881 | . . . . . . . . . 10 | |
12 | 11 | sucid 4962 | . . . . . . . . 9 |
13 | 11 | sucex 6646 | . . . . . . . . . 10 |
14 | eqid 2457 | . . . . . . . . . . 11 | |
15 | suceq 4948 | . . . . . . . . . . 11 | |
16 | suceq 4948 | . . . . . . . . . . 11 | |
17 | 14, 15, 16 | frsucmpt2 7124 | . . . . . . . . . 10 |
18 | 13, 17 | mpan2 671 | . . . . . . . . 9 |
19 | 12, 18 | syl5eleqr 2552 | . . . . . . . 8 |
20 | eleq1 2529 | . . . . . . . 8 | |
21 | 19, 20 | syl5ib 219 | . . . . . . 7 |
22 | peano2b 6716 | . . . . . . . . 9 | |
23 | fnfvelrn 6028 | . . . . . . . . . 10 | |
24 | 4, 23 | mpan 670 | . . . . . . . . 9 |
25 | 22, 24 | sylbi 195 | . . . . . . . 8 |
26 | 25 | a1i 11 | . . . . . . 7 |
27 | 21, 26 | jcad 533 | . . . . . 6 |
28 | fvex 5881 | . . . . . . 7 | |
29 | eleq2 2530 | . . . . . . . 8 | |
30 | eleq1 2529 | . . . . . . . 8 | |
31 | 29, 30 | anbi12d 710 | . . . . . . 7 |
32 | 28, 31 | spcev 3201 | . . . . . 6 |
33 | 27, 32 | syl6com 35 | . . . . 5 |
34 | 33 | rexlimiv 2943 | . . . 4 |
35 | 10, 34 | sylbi 195 | . . 3 |
36 | 35 | ax-gen 1618 | . 2 |
37 | fndm 5685 | . . . . . 6 | |
38 | 4, 37 | ax-mp 5 | . . . . 5 |
39 | inf0.1 | . . . . 5 | |
40 | 38, 39 | eqeltri 2541 | . . . 4 |
41 | fnfun 5683 | . . . . 5 | |
42 | 4, 41 | ax-mp 5 | . . . 4 |
43 | funrnex 6767 | . . . 4 | |
44 | 40, 42, 43 | mp2 9 | . . 3 |
45 | eleq2 2530 | . . . 4 | |
46 | eleq2 2530 | . . . . . 6 | |
47 | eleq2 2530 | . . . . . . . 8 | |
48 | 47 | anbi2d 703 | . . . . . . 7 |
49 | 48 | exbidv 1714 | . . . . . 6 |
50 | 46, 49 | imbi12d 320 | . . . . 5 |
51 | 50 | albidv 1713 | . . . 4 |
52 | 45, 51 | anbi12d 710 | . . 3 |
53 | 44, 52 | spcev 3201 | . 2 |
54 | 8, 36, 53 | mp2an 672 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 E. wrex 2808
cvv 3109
c0 3784 e. cmpt 4510 suc csuc 4885
dom cdm 5004 ran crn 5005 |` cres 5006
Fun wfun 5587
Fn wfn 5588 ` cfv 5593 com 6700
rec crdg 7094 |
This theorem is referenced by: axinf 8082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 |
Copyright terms: Public domain | W3C validator |