Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf1 | Unicode version |
Description: Variation of Axiom of Infinity (using zfinf 8077 as a hypothesis). Axiom of Infinity in [FreydScedrov] p. 283. (Contributed by NM, 14-Oct-1996.) (Revised by David Abernethy, 1-Oct-2013.) |
Ref | Expression |
---|---|
inf1.1 |
Ref | Expression |
---|---|
inf1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inf1.1 | . 2 | |
2 | ne0i 3790 | . . 3 | |
3 | 2 | anim1i 568 | . 2 |
4 | 1, 3 | eximii 1658 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 E. wex 1612 =/= wne 2652
c0 3784 |
This theorem is referenced by: inf2 8061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-dif 3478 df-nul 3785 |
Copyright terms: Public domain | W3C validator |