Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf2 | Unicode version |
Description: Variation of Axiom of Infinity. There exists a nonempty set that is a subset of its union (using zfinf 8077 as a hypothesis). Abbreviated version of the Axiom of Infinity in [FreydScedrov] p. 283. (Contributed by NM, 28-Oct-1996.) |
Ref | Expression |
---|---|
inf1.1 |
Ref | Expression |
---|---|
inf2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inf1.1 | . . 3 | |
2 | 1 | inf1 8060 | . 2 |
3 | dfss2 3492 | . . . . 5 | |
4 | eluni 4252 | . . . . . . 7 | |
5 | 4 | imbi2i 312 | . . . . . 6 |
6 | 5 | albii 1640 | . . . . 5 |
7 | 3, 6 | bitri 249 | . . . 4 |
8 | 7 | anbi2i 694 | . . 3 |
9 | 8 | exbii 1667 | . 2 |
10 | 2, 9 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 E. wex 1612 e. wcel 1818
=/= wne 2652 C_ wss 3475 c0 3784 U. cuni 4249 |
This theorem is referenced by: axinf2 8078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 df-uni 4250 |
Copyright terms: Public domain | W3C validator |