Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf3lem3 | Unicode version |
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8073 for detailed description. In the proof, we invoke the Axiom of Regularity in the form of zfreg 8042. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
inf3lem.1 | |
inf3lem.2 | |
inf3lem.3 | |
inf3lem.4 |
Ref | Expression |
---|---|
inf3lem3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inf3lem.1 | . . . . 5 | |
2 | inf3lem.2 | . . . . 5 | |
3 | inf3lem.3 | . . . . 5 | |
4 | inf3lem.4 | . . . . 5 | |
5 | 1, 2, 3, 4 | inf3lemd 8065 | . . . 4 |
6 | 1, 2, 3, 4 | inf3lem2 8067 | . . . . 5 |
7 | 6 | com12 31 | . . . 4 |
8 | pssdifn0 3888 | . . . 4 | |
9 | 5, 7, 8 | syl6an 545 | . . 3 |
10 | vex 3112 | . . . . . 6 | |
11 | difss 3630 | . . . . . 6 | |
12 | 10, 11 | ssexi 4597 | . . . . 5 |
13 | 12 | zfreg 8042 | . . . 4 |
14 | eldifi 3625 | . . . . . . . . . . 11 | |
15 | inssdif0 3895 | . . . . . . . . . . . 12 | |
16 | 15 | biimpri 206 | . . . . . . . . . . 11 |
17 | 14, 16 | anim12i 566 | . . . . . . . . . 10 |
18 | vex 3112 | . . . . . . . . . . 11 | |
19 | fvex 5881 | . . . . . . . . . . 11 | |
20 | 1, 2, 18, 19 | inf3lema 8062 | . . . . . . . . . 10 |
21 | 17, 20 | sylibr 212 | . . . . . . . . 9 |
22 | 1, 2, 3, 4 | inf3lemc 8064 | . . . . . . . . . 10 |
23 | 22 | eleq2d 2527 | . . . . . . . . 9 |
24 | 21, 23 | syl5ibr 221 | . . . . . . . 8 |
25 | eldifn 3626 | . . . . . . . . . 10 | |
26 | 25 | adantr 465 | . . . . . . . . 9 |
27 | 26 | a1i 11 | . . . . . . . 8 |
28 | 24, 27 | jcad 533 | . . . . . . 7 |
29 | eleq2 2530 | . . . . . . . . . 10 | |
30 | 29 | biimprd 223 | . . . . . . . . 9 |
31 | iman 424 | . . . . . . . . 9 | |
32 | 30, 31 | sylib 196 | . . . . . . . 8 |
33 | 32 | necon2ai 2692 | . . . . . . 7 |
34 | 28, 33 | syl6 33 | . . . . . 6 |
35 | 34 | expd 436 | . . . . 5 |
36 | 35 | rexlimdv 2947 | . . . 4 |
37 | 13, 36 | syl5 32 | . . 3 |
38 | 9, 37 | syld 44 | . 2 |
39 | 38 | com12 31 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 E. wrex 2808 { crab 2811
cvv 3109
\ cdif 3472 i^i cin 3474 C_ wss 3475
c0 3784 U. cuni 4249 e. cmpt 4510
suc csuc 4885
|` cres 5006 ` cfv 5593 com 6700
rec crdg 7094 |
This theorem is referenced by: inf3lem4 8069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-reg 8039 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 |
Copyright terms: Public domain | W3C validator |