Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf3lem6 | Unicode version |
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8073 for detailed description. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
inf3lem.1 | |
inf3lem.2 | |
inf3lem.3 | |
inf3lem.4 |
Ref | Expression |
---|---|
inf3lem6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inf3lem.1 | . . . . . . . . . . 11 | |
2 | inf3lem.2 | . . . . . . . . . . 11 | |
3 | vex 3112 | . . . . . . . . . . 11 | |
4 | vex 3112 | . . . . . . . . . . 11 | |
5 | 1, 2, 3, 4 | inf3lem5 8070 | . . . . . . . . . 10 |
6 | dfpss2 3588 | . . . . . . . . . . 11 | |
7 | 6 | simprbi 464 | . . . . . . . . . 10 |
8 | 5, 7 | syl6 33 | . . . . . . . . 9 |
9 | 8 | expdimp 437 | . . . . . . . 8 |
10 | 9 | adantrl 715 | . . . . . . 7 |
11 | 1, 2, 4, 3 | inf3lem5 8070 | . . . . . . . . . 10 |
12 | dfpss2 3588 | . . . . . . . . . . . 12 | |
13 | 12 | simprbi 464 | . . . . . . . . . . 11 |
14 | eqcom 2466 | . . . . . . . . . . 11 | |
15 | 13, 14 | sylnib 304 | . . . . . . . . . 10 |
16 | 11, 15 | syl6 33 | . . . . . . . . 9 |
17 | 16 | expdimp 437 | . . . . . . . 8 |
18 | 17 | adantrr 716 | . . . . . . 7 |
19 | 10, 18 | jaod 380 | . . . . . 6 |
20 | 19 | con2d 115 | . . . . 5 |
21 | nnord 6708 | . . . . . . 7 | |
22 | nnord 6708 | . . . . . . 7 | |
23 | ordtri3 4919 | . . . . . . 7 | |
24 | 21, 22, 23 | syl2an 477 | . . . . . 6 |
25 | 24 | adantl 466 | . . . . 5 |
26 | 20, 25 | sylibrd 234 | . . . 4 |
27 | 26 | ralrimivva 2878 | . . 3 |
28 | frfnom 7119 | . . . . . 6 | |
29 | fneq1 5674 | . . . . . 6 | |
30 | 28, 29 | mpbiri 233 | . . . . 5 |
31 | fvelrnb 5920 | . . . . . . . 8 | |
32 | inf3lem.4 | . . . . . . . . . . . 12 | |
33 | 1, 2, 4, 32 | inf3lemd 8065 | . . . . . . . . . . 11 |
34 | fvex 5881 | . . . . . . . . . . . 12 | |
35 | 34 | elpw 4018 | . . . . . . . . . . 11 |
36 | 33, 35 | sylibr 212 | . . . . . . . . . 10 |
37 | eleq1 2529 | . . . . . . . . . 10 | |
38 | 36, 37 | syl5ibcom 220 | . . . . . . . . 9 |
39 | 38 | rexlimiv 2943 | . . . . . . . 8 |
40 | 31, 39 | syl6bi 228 | . . . . . . 7 |
41 | 40 | ssrdv 3509 | . . . . . 6 |
42 | 41 | ancli 551 | . . . . 5 |
43 | 2, 30, 42 | mp2b 10 | . . . 4 |
44 | df-f 5597 | . . . 4 | |
45 | 43, 44 | mpbir 209 | . . 3 |
46 | 27, 45 | jctil 537 | . 2 |
47 | dff13 6166 | . 2 | |
48 | 46, 47 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
A. wral 2807 E. wrex 2808 { crab 2811
cvv 3109
i^i cin 3474 C_ wss 3475 C. wpss 3476
c0 3784 ~P cpw 4012 U. cuni 4249
e. cmpt 4510 Ord word 4882 ran crn 5005
|` cres 5006 Fn wfn 5588 --> wf 5589
-1-1-> wf1 5590
` cfv 5593 com 6700
rec crdg 7094 |
This theorem is referenced by: inf3lem7 8072 dominf 8846 dominfac 8969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-reg 8039 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 |
Copyright terms: Public domain | W3C validator |