Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf5 | Unicode version |
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (see theorem infeq5 8075). This provides us with a very compact way to express the Axiom of Infinity using only elementary symbols. (Contributed by NM, 3-Jun-2005.) |
Ref | Expression |
---|---|
inf5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 8081 | . 2 | |
2 | infeq5i 8074 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: E. wex 1612 e. wcel 1818
cvv 3109
C. wpss 3476 U. cuni 4249 com 6700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-om 6701 |
Copyright terms: Public domain | W3C validator |