Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infdif | Unicode version |
Description: The cardinality of an infinite set does not change after subtracting a strictly smaller one. Example in [Enderton] p. 164. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
infdif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 996 | . . 3 | |
2 | difss 3630 | . . 3 | |
3 | ssdomg 7581 | . . 3 | |
4 | 1, 2, 3 | mpisyl 18 | . 2 |
5 | sdomdom 7563 | . . . . . . . . 9 | |
6 | 5 | 3ad2ant3 1019 | . . . . . . . 8 |
7 | numdom 8440 | . . . . . . . 8 | |
8 | 1, 6, 7 | syl2anc 661 | . . . . . . 7 |
9 | unnum 8601 | . . . . . . 7 | |
10 | 1, 8, 9 | syl2anc 661 | . . . . . 6 |
11 | ssun1 3666 | . . . . . 6 | |
12 | ssdomg 7581 | . . . . . 6 | |
13 | 10, 11, 12 | mpisyl 18 | . . . . 5 |
14 | undif1 3903 | . . . . . 6 | |
15 | ssnum 8441 | . . . . . . . 8 | |
16 | 1, 2, 15 | sylancl 662 | . . . . . . 7 |
17 | uncdadom 8572 | . . . . . . 7 | |
18 | 16, 8, 17 | syl2anc 661 | . . . . . 6 |
19 | 14, 18 | syl5eqbrr 4486 | . . . . 5 |
20 | domtr 7588 | . . . . 5 | |
21 | 13, 19, 20 | syl2anc 661 | . . . 4 |
22 | simp3 998 | . . . . . . 7 | |
23 | sdomdom 7563 | . . . . . . . . 9 | |
24 | cdadom1 8587 | . . . . . . . . 9 | |
25 | 23, 24 | syl 16 | . . . . . . . 8 |
26 | domtr 7588 | . . . . . . . . . . 11 | |
27 | 26 | ex 434 | . . . . . . . . . 10 |
28 | 21, 27 | syl 16 | . . . . . . . . 9 |
29 | simp2 997 | . . . . . . . . . . . 12 | |
30 | domtr 7588 | . . . . . . . . . . . . 13 | |
31 | 30 | ex 434 | . . . . . . . . . . . 12 |
32 | 29, 31 | syl 16 | . . . . . . . . . . 11 |
33 | cdainf 8593 | . . . . . . . . . . . . 13 | |
34 | 33 | biimpri 206 | . . . . . . . . . . . 12 |
35 | domrefg 7570 | . . . . . . . . . . . . 13 | |
36 | infcdaabs 8607 | . . . . . . . . . . . . . . 15 | |
37 | 36 | 3com23 1202 | . . . . . . . . . . . . . 14 |
38 | 37 | 3expia 1198 | . . . . . . . . . . . . 13 |
39 | 35, 38 | mpdan 668 | . . . . . . . . . . . 12 |
40 | 8, 34, 39 | syl2im 38 | . . . . . . . . . . 11 |
41 | 32, 40 | syld 44 | . . . . . . . . . 10 |
42 | domen2 7680 | . . . . . . . . . . 11 | |
43 | 42 | biimpcd 224 | . . . . . . . . . 10 |
44 | 41, 43 | sylcom 29 | . . . . . . . . 9 |
45 | 28, 44 | syld 44 | . . . . . . . 8 |
46 | domnsym 7663 | . . . . . . . 8 | |
47 | 25, 45, 46 | syl56 34 | . . . . . . 7 |
48 | 22, 47 | mt2d 117 | . . . . . 6 |
49 | domtri2 8391 | . . . . . . 7 | |
50 | 8, 16, 49 | syl2anc 661 | . . . . . 6 |
51 | 48, 50 | mpbird 232 | . . . . 5 |
52 | cdadom2 8588 | . . . . 5 | |
53 | 51, 52 | syl 16 | . . . 4 |
54 | domtr 7588 | . . . 4 | |
55 | 21, 53, 54 | syl2anc 661 | . . 3 |
56 | domtr 7588 | . . . . . 6 | |
57 | 29, 55, 56 | syl2anc 661 | . . . . 5 |
58 | cdainf 8593 | . . . . 5 | |
59 | 57, 58 | sylibr 212 | . . . 4 |
60 | domrefg 7570 | . . . . 5 | |
61 | 16, 60 | syl 16 | . . . 4 |
62 | infcdaabs 8607 | . . . 4 | |
63 | 16, 59, 61, 62 | syl3anc 1228 | . . 3 |
64 | domentr 7594 | . . 3 | |
65 | 55, 63, 64 | syl2anc 661 | . 2 |
66 | sbth 7657 | . 2 | |
67 | 4, 65, 66 | syl2anc 661 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ w3a 973 e. wcel 1818
\ cdif 3472 u. cun 3473 C_ wss 3475
class class class wbr 4452 dom cdm 5004
(class class class)co 6296 com 6700
cen 7533 cdom 7534 csdm 7535 ccrd 8337 ccda 8568 |
This theorem is referenced by: infdif2 8611 alephsuc3 8976 aleph1irr 13979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-oi 7956 df-card 8341 df-cda 8569 |
Copyright terms: Public domain | W3C validator |