Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infdifsn | Unicode version |
Description: Removing a singleton from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
infdifsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi 7547 | . . . 4 | |
2 | 1 | adantr 465 | . . 3 |
3 | reldom 7542 | . . . . . . 7 | |
4 | 3 | brrelex2i 5046 | . . . . . 6 |
5 | 4 | ad2antrr 725 | . . . . 5 |
6 | simplr 755 | . . . . 5 | |
7 | f1f 5786 | . . . . . . 7 | |
8 | 7 | adantl 466 | . . . . . 6 |
9 | peano1 6719 | . . . . . 6 | |
10 | ffvelrn 6029 | . . . . . 6 | |
11 | 8, 9, 10 | sylancl 662 | . . . . 5 |
12 | difsnen 7619 | . . . . 5 | |
13 | 5, 6, 11, 12 | syl3anc 1228 | . . . 4 |
14 | vex 3112 | . . . . . . . . . 10 | |
15 | f1f1orn 5832 | . . . . . . . . . . 11 | |
16 | 15 | adantl 466 | . . . . . . . . . 10 |
17 | f1oen3g 7551 | . . . . . . . . . 10 | |
18 | 14, 16, 17 | sylancr 663 | . . . . . . . . 9 |
19 | 18 | ensymd 7586 | . . . . . . . 8 |
20 | 3 | brrelexi 5045 | . . . . . . . . . . 11 |
21 | 20 | ad2antrr 725 | . . . . . . . . . 10 |
22 | limom 6715 | . . . . . . . . . . 11 | |
23 | 22 | limenpsi 7712 | . . . . . . . . . 10 |
24 | 21, 23 | syl 16 | . . . . . . . . 9 |
25 | 14 | resex 5322 | . . . . . . . . . . 11 |
26 | simpr 461 | . . . . . . . . . . . 12 | |
27 | difss 3630 | . . . . . . . . . . . 12 | |
28 | f1ores 5835 | . . . . . . . . . . . 12 | |
29 | 26, 27, 28 | sylancl 662 | . . . . . . . . . . 11 |
30 | f1oen3g 7551 | . . . . . . . . . . 11 | |
31 | 25, 29, 30 | sylancr 663 | . . . . . . . . . 10 |
32 | f1orn 5831 | . . . . . . . . . . . . 13 | |
33 | 32 | simprbi 464 | . . . . . . . . . . . 12 |
34 | imadif 5668 | . . . . . . . . . . . 12 | |
35 | 16, 33, 34 | 3syl 20 | . . . . . . . . . . 11 |
36 | f1fn 5787 | . . . . . . . . . . . . . 14 | |
37 | 36 | adantl 466 | . . . . . . . . . . . . 13 |
38 | fnima 5704 | . . . . . . . . . . . . 13 | |
39 | 37, 38 | syl 16 | . . . . . . . . . . . 12 |
40 | fnsnfv 5933 | . . . . . . . . . . . . . 14 | |
41 | 37, 9, 40 | sylancl 662 | . . . . . . . . . . . . 13 |
42 | 41 | eqcomd 2465 | . . . . . . . . . . . 12 |
43 | 39, 42 | difeq12d 3622 | . . . . . . . . . . 11 |
44 | 35, 43 | eqtrd 2498 | . . . . . . . . . 10 |
45 | 31, 44 | breqtrd 4476 | . . . . . . . . 9 |
46 | entr 7587 | . . . . . . . . 9 | |
47 | 24, 45, 46 | syl2anc 661 | . . . . . . . 8 |
48 | entr 7587 | . . . . . . . 8 | |
49 | 19, 47, 48 | syl2anc 661 | . . . . . . 7 |
50 | difexg 4600 | . . . . . . . 8 | |
51 | enrefg 7567 | . . . . . . . 8 | |
52 | 5, 50, 51 | 3syl 20 | . . . . . . 7 |
53 | disjdif 3900 | . . . . . . . 8 | |
54 | 53 | a1i 11 | . . . . . . 7 |
55 | difss 3630 | . . . . . . . . . 10 | |
56 | ssrin 3722 | . . . . . . . . . 10 | |
57 | 55, 56 | ax-mp 5 | . . . . . . . . 9 |
58 | sseq0 3817 | . . . . . . . . 9 | |
59 | 57, 53, 58 | mp2an 672 | . . . . . . . 8 |
60 | 59 | a1i 11 | . . . . . . 7 |
61 | unen 7618 | . . . . . . 7 | |
62 | 49, 52, 54, 60, 61 | syl22anc 1229 | . . . . . 6 |
63 | frn 5742 | . . . . . . . 8 | |
64 | 8, 63 | syl 16 | . . . . . . 7 |
65 | undif 3908 | . . . . . . 7 | |
66 | 64, 65 | sylib 196 | . . . . . 6 |
67 | uncom 3647 | . . . . . . 7 | |
68 | eldifn 3626 | . . . . . . . . . . 11 | |
69 | fnfvelrn 6028 | . . . . . . . . . . . 12 | |
70 | 37, 9, 69 | sylancl 662 | . . . . . . . . . . 11 |
71 | 68, 70 | nsyl3 119 | . . . . . . . . . 10 |
72 | disjsn 4090 | . . . . . . . . . 10 | |
73 | 71, 72 | sylibr 212 | . . . . . . . . 9 |
74 | undif4 3883 | . . . . . . . . 9 | |
75 | 73, 74 | syl 16 | . . . . . . . 8 |
76 | uncom 3647 | . . . . . . . . . 10 | |
77 | 76, 66 | syl5eq 2510 | . . . . . . . . 9 |
78 | 77 | difeq1d 3620 | . . . . . . . 8 |
79 | 75, 78 | eqtrd 2498 | . . . . . . 7 |
80 | 67, 79 | syl5eq 2510 | . . . . . 6 |
81 | 62, 66, 80 | 3brtr3d 4481 | . . . . 5 |
82 | 81 | ensymd 7586 | . . . 4 |
83 | entr 7587 | . . . 4 | |
84 | 13, 82, 83 | syl2anc 661 | . . 3 |
85 | 2, 84 | exlimddv 1726 | . 2 |
86 | difsn 4164 | . . . 4 | |
87 | 86 | adantl 466 | . . 3 |
88 | enrefg 7567 | . . . . 5 | |
89 | 4, 88 | syl 16 | . . . 4 |
90 | 89 | adantr 465 | . . 3 |
91 | 87, 90 | eqbrtrd 4472 | . 2 |
92 | 85, 91 | pm2.61dan 791 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474
C_ wss 3475 c0 3784 { csn 4029 class class class wbr 4452
`' ccnv 5003 ran crn 5005 |` cres 5006
" cima 5007 Fun wfun 5587 Fn wfn 5588
--> wf 5589 -1-1-> wf1 5590 -1-1-onto-> wf1o 5592 ` cfv 5593 com 6700
cen 7533 cdom 7534 |
This theorem is referenced by: infdiffi 8095 infcda1 8594 infpss 8618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-1o 7149 df-er 7330 df-en 7537 df-dom 7538 |
Copyright terms: Public domain | W3C validator |