Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infensuc | Unicode version |
Description: Any infinite ordinal is equinumerous to its successor. Exercise 7 of [TakeutiZaring] p. 88. Proved without the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 13-Jan-2013.) |
Ref | Expression |
---|---|
infensuc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onprc 6620 | . . . . 5 | |
2 | eleq1 2529 | . . . . 5 | |
3 | 1, 2 | mtbiri 303 | . . . 4 |
4 | ssexg 4598 | . . . . 5 | |
5 | 4 | ancoms 453 | . . . 4 |
6 | 3, 5 | nsyl3 119 | . . 3 |
7 | omon 6711 | . . . 4 | |
8 | 7 | ori 375 | . . 3 |
9 | 6, 8 | nsyl2 127 | . 2 |
10 | id 22 | . . . . . . 7 | |
11 | suceq 4948 | . . . . . . 7 | |
12 | 10, 11 | breq12d 4465 | . . . . . 6 |
13 | id 22 | . . . . . . 7 | |
14 | suceq 4948 | . . . . . . 7 | |
15 | 13, 14 | breq12d 4465 | . . . . . 6 |
16 | id 22 | . . . . . . 7 | |
17 | suceq 4948 | . . . . . . 7 | |
18 | 16, 17 | breq12d 4465 | . . . . . 6 |
19 | id 22 | . . . . . . 7 | |
20 | suceq 4948 | . . . . . . 7 | |
21 | 19, 20 | breq12d 4465 | . . . . . 6 |
22 | limom 6715 | . . . . . . 7 | |
23 | 22 | limensuci 7713 | . . . . . 6 |
24 | vex 3112 | . . . . . . . . . 10 | |
25 | 24 | sucex 6646 | . . . . . . . . . 10 |
26 | en2sn 7615 | . . . . . . . . . 10 | |
27 | 24, 25, 26 | mp2an 672 | . . . . . . . . 9 |
28 | eloni 4893 | . . . . . . . . . . . . 13 | |
29 | ordirr 4901 | . . . . . . . . . . . . 13 | |
30 | 28, 29 | syl 16 | . . . . . . . . . . . 12 |
31 | disjsn 4090 | . . . . . . . . . . . 12 | |
32 | 30, 31 | sylibr 212 | . . . . . . . . . . 11 |
33 | eloni 4893 | . . . . . . . . . . . . 13 | |
34 | ordirr 4901 | . . . . . . . . . . . . 13 | |
35 | 33, 34 | syl 16 | . . . . . . . . . . . 12 |
36 | sucelon 6652 | . . . . . . . . . . . 12 | |
37 | disjsn 4090 | . . . . . . . . . . . 12 | |
38 | 35, 36, 37 | 3imtr4i 266 | . . . . . . . . . . 11 |
39 | 32, 38 | jca 532 | . . . . . . . . . 10 |
40 | unen 7618 | . . . . . . . . . . . 12 | |
41 | df-suc 4889 | . . . . . . . . . . . 12 | |
42 | df-suc 4889 | . . . . . . . . . . . 12 | |
43 | 40, 41, 42 | 3brtr4g 4484 | . . . . . . . . . . 11 |
44 | 43 | ex 434 | . . . . . . . . . 10 |
45 | 39, 44 | syl5 32 | . . . . . . . . 9 |
46 | 27, 45 | mpan2 671 | . . . . . . . 8 |
47 | 46 | com12 31 | . . . . . . 7 |
48 | 47 | ad2antrr 725 | . . . . . 6 |
49 | vex 3112 | . . . . . . . . 9 | |
50 | limensuc 7714 | . . . . . . . . 9 | |
51 | 49, 50 | mpan 670 | . . . . . . . 8 |
52 | 51 | ad2antrr 725 | . . . . . . 7 |
53 | 52 | a1d 25 | . . . . . 6 |
54 | 12, 15, 18, 21, 23, 48, 53 | tfindsg 6695 | . . . . 5 |
55 | 54 | exp31 604 | . . . 4 |
56 | 55 | com23 78 | . . 3 |
57 | 56 | imp 429 | . 2 |
58 | 9, 57 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 cvv 3109
u. cun 3473 i^i cin 3474 C_ wss 3475
c0 3784 { csn 4029 class class class wbr 4452
Ord word 4882
con0 4883 Lim wlim 4884 suc csuc 4885
com 6700
cen 7533 |
This theorem is referenced by: cardlim 8374 cardsucinf 8386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-1o 7149 df-er 7330 df-en 7537 df-dom 7538 |
Copyright terms: Public domain | W3C validator |