Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq5 | Unicode version |
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (shown on the right-hand side in the form of omex 8081.) The left-hand side provides us with a very short way to express the Axiom of Infinity using only elementary symbols. This proof of equivalence does not depend on the Axiom of Infinity. (Contributed by NM, 23-Mar-2004.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
infeq5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3491 | . . . . 5 | |
2 | unieq 4257 | . . . . . . . . . 10 | |
3 | uni0 4276 | . . . . . . . . . 10 | |
4 | 2, 3 | syl6req 2515 | . . . . . . . . 9 |
5 | eqtr 2483 | . . . . . . . . 9 | |
6 | 4, 5 | mpdan 668 | . . . . . . . 8 |
7 | 6 | necon3i 2697 | . . . . . . 7 |
8 | 7 | anim1i 568 | . . . . . 6 |
9 | 8 | ancoms 453 | . . . . 5 |
10 | 1, 9 | sylbi 195 | . . . 4 |
11 | 10 | eximi 1656 | . . 3 |
12 | eqid 2457 | . . . . 5 | |
13 | eqid 2457 | . . . . 5 | |
14 | vex 3112 | . . . . 5 | |
15 | 12, 13, 14, 14 | inf3lem7 8072 | . . . 4 |
16 | 15 | exlimiv 1722 | . . 3 |
17 | 11, 16 | syl 16 | . 2 |
18 | infeq5i 8074 | . 2 | |
19 | 17, 18 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
=/= wne 2652 { crab 2811 cvv 3109
i^i cin 3474 C_ wss 3475 C. wpss 3476
c0 3784 U. cuni 4249 e. cmpt 4510
|` cres 5006 com 6700
rec crdg 7094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-reg 8039 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 |
Copyright terms: Public domain | W3C validator |