Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infpss | Unicode version |
Description: Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of [TakeutiZaring] p. 91. See also infpssALT 8714. (Contributed by NM, 23-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
infpss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infn0 7802 | . . 3 | |
2 | n0 3794 | . . 3 | |
3 | 1, 2 | sylib 196 | . 2 |
4 | reldom 7542 | . . . . . 6 | |
5 | 4 | brrelex2i 5046 | . . . . 5 |
6 | difexg 4600 | . . . . 5 | |
7 | 5, 6 | syl 16 | . . . 4 |
8 | 7 | adantr 465 | . . 3 |
9 | simpr 461 | . . . . 5 | |
10 | difsnpss 4173 | . . . . 5 | |
11 | 9, 10 | sylib 196 | . . . 4 |
12 | infdifsn 8094 | . . . . 5 | |
13 | 12 | adantr 465 | . . . 4 |
14 | 11, 13 | jca 532 | . . 3 |
15 | psseq1 3590 | . . . . 5 | |
16 | breq1 4455 | . . . . 5 | |
17 | 15, 16 | anbi12d 710 | . . . 4 |
18 | 17 | spcegv 3195 | . . 3 |
19 | 8, 14, 18 | sylc 60 | . 2 |
20 | 3, 19 | exlimddv 1726 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
=/= wne 2652 cvv 3109
\ cdif 3472 C. wpss 3476 c0 3784 { csn 4029 class class class wbr 4452
com 6700
cen 7533 cdom 7534 |
This theorem is referenced by: isfin4-2 8715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-1o 7149 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 |
Copyright terms: Public domain | W3C validator |