Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infssuni | Unicode version |
Description: If an infinite set is included in the underlying set of a finite cover , then there exists a set of the cover that contains an infinite number of element of . (Contributed by FL, 2-Aug-2009.) |
Ref | Expression |
---|---|
infssuni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfral2 2904 | . . 3 | |
2 | iunfi 7828 | . . . . . . . 8 | |
3 | iunin2 4394 | . . . . . . . . . 10 | |
4 | 3 | eleq1i 2534 | . . . . . . . . 9 |
5 | uniiun 4383 | . . . . . . . . . . . . 13 | |
6 | 5 | eqcomi 2470 | . . . . . . . . . . . 12 |
7 | 6 | ineq2i 3696 | . . . . . . . . . . 11 |
8 | 7 | eleq1i 2534 | . . . . . . . . . 10 |
9 | df-ss 3489 | . . . . . . . . . . . 12 | |
10 | eleq1 2529 | . . . . . . . . . . . . 13 | |
11 | pm2.24 109 | . . . . . . . . . . . . 13 | |
12 | 10, 11 | syl6bi 228 | . . . . . . . . . . . 12 |
13 | 9, 12 | sylbi 195 | . . . . . . . . . . 11 |
14 | 13 | com12 31 | . . . . . . . . . 10 |
15 | 8, 14 | sylbi 195 | . . . . . . . . 9 |
16 | 4, 15 | sylbi 195 | . . . . . . . 8 |
17 | 2, 16 | syl 16 | . . . . . . 7 |
18 | 17 | ex 434 | . . . . . 6 |
19 | 18 | com24 87 | . . . . 5 |
20 | 19 | com12 31 | . . . 4 |
21 | 20 | 3imp 1190 | . . 3 |
22 | 1, 21 | syl5bir 218 | . 2 |
23 | 22 | pm2.18d 111 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 A. wral 2807 E. wrex 2808
i^i cin 3474 C_ wss 3475 U. cuni 4249
U_ ciun 4330 cfn 7536 |
This theorem is referenced by: bwth 19910 bwthOLD 19911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-fin 7540 |
Copyright terms: Public domain | W3C validator |