Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infxp | Unicode version |
Description: Absorption law for multiplication with an infinite cardinal. Equivalent to Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
infxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom 7563 | . . 3 | |
2 | infxpabs 8613 | . . . . . 6 | |
3 | infunabs 8608 | . . . . . . . . 9 | |
4 | 3 | 3expa 1196 | . . . . . . . 8 |
5 | 4 | adantrl 715 | . . . . . . 7 |
6 | 5 | ensymd 7586 | . . . . . 6 |
7 | entr 7587 | . . . . . 6 | |
8 | 2, 6, 7 | syl2anc 661 | . . . . 5 |
9 | 8 | expr 615 | . . . 4 |
10 | 9 | adantrl 715 | . . 3 |
11 | 1, 10 | syl5 32 | . 2 |
12 | domtri2 8391 | . . . 4 | |
13 | 12 | ad2ant2r 746 | . . 3 |
14 | xpcomeng 7629 | . . . . . . 7 | |
15 | 14 | ad2ant2r 746 | . . . . . 6 |
16 | 15 | adantr 465 | . . . . 5 |
17 | simplrl 761 | . . . . . . 7 | |
18 | simplr 755 | . . . . . . . 8 | |
19 | domtr 7588 | . . . . . . . 8 | |
20 | 18, 19 | sylan 471 | . . . . . . 7 |
21 | infn0 7802 | . . . . . . . 8 | |
22 | 21 | ad3antlr 730 | . . . . . . 7 |
23 | simpr 461 | . . . . . . 7 | |
24 | infxpabs 8613 | . . . . . . 7 | |
25 | 17, 20, 22, 23, 24 | syl22anc 1229 | . . . . . 6 |
26 | uncom 3647 | . . . . . . . 8 | |
27 | infunabs 8608 | . . . . . . . . 9 | |
28 | 17, 20, 23, 27 | syl3anc 1228 | . . . . . . . 8 |
29 | 26, 28 | syl5eqbr 4485 | . . . . . . 7 |
30 | 29 | ensymd 7586 | . . . . . 6 |
31 | entr 7587 | . . . . . 6 | |
32 | 25, 30, 31 | syl2anc 661 | . . . . 5 |
33 | entr 7587 | . . . . 5 | |
34 | 16, 32, 33 | syl2anc 661 | . . . 4 |
35 | 34 | ex 434 | . . 3 |
36 | 13, 35 | sylbird 235 | . 2 |
37 | 11, 36 | pm2.61d 158 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 e. wcel 1818
=/= wne 2652 u. cun 3473 c0 3784 class class class wbr 4452
X. cxp 5002 dom cdm 5004 com 6700
cen 7533 cdom 7534 csdm 7535 ccrd 8337 |
This theorem is referenced by: alephmul 8974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-oi 7956 df-card 8341 df-cda 8569 |
Copyright terms: Public domain | W3C validator |