Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infxpenc | Unicode version |
Description: A canonical version of infxpen 8413, by a completely different approach
(although it uses infxpen 8413 via xpomen 8414). Using Cantor's normal form,
we can show that respects equinumerosity (oef1o 8162), so that
all the steps of ( ) ( ) ( 2 )
( 2 ) can be verified using bijections to do
the ordinal commutations. (The assumption on can be satisfied
using cnfcom3c 8171.) (Contributed by Mario Carneiro,
30-May-2015.)
(Revised by AV, 7-Jul-2019.) |
Ref | Expression |
---|---|
infxpenc.1 | |
infxpenc.2 | |
infxpenc.3 | |
infxpenc.4 | |
infxpenc.5 | |
infxpenc.6 | |
infxpenc.k | |
infxpenc.h | |
infxpenc.l | |
infxpenc.x | |
infxpenc.y | |
infxpenc.j | |
infxpenc.z | |
infxpenc.t | |
infxpenc.g |
Ref | Expression |
---|---|
infxpenc |
N
, ,, ,,,, ,, ,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxpenc.6 | . . . 4 | |
2 | f1ocnv 5833 | . . . 4 | |
3 | 1, 2 | syl 16 | . . 3 |
4 | infxpenc.4 | . . . . . . . 8 | |
5 | f1oi 5856 | . . . . . . . . 9 | |
6 | 5 | a1i 11 | . . . . . . . 8 |
7 | omelon 8084 | . . . . . . . . . . 11 | |
8 | 7 | a1i 11 | . . . . . . . . . 10 |
9 | 2on 7157 | . . . . . . . . . 10 | |
10 | oecl 7206 | . . . . . . . . . 10 | |
11 | 8, 9, 10 | sylancl 662 | . . . . . . . . 9 |
12 | 9 | a1i 11 | . . . . . . . . . 10 |
13 | peano1 6719 | . . . . . . . . . . 11 | |
14 | 13 | a1i 11 | . . . . . . . . . 10 |
15 | oen0 7254 | . . . . . . . . . 10 | |
16 | 8, 12, 14, 15 | syl21anc 1227 | . . . . . . . . 9 |
17 | ondif1 7170 | . . . . . . . . 9 | |
18 | 11, 16, 17 | sylanbrc 664 | . . . . . . . 8 |
19 | infxpenc.3 | . . . . . . . . 9 | |
20 | 19 | eldifad 3487 | . . . . . . . 8 |
21 | infxpenc.5 | . . . . . . . 8 | |
22 | infxpenc.k | . . . . . . . 8 | |
23 | infxpenc.h | . . . . . . . 8 | |
24 | 4, 6, 18, 20, 8, 20, 21, 22, 23 | oef1o 8162 | . . . . . . 7 |
25 | f1oi 5856 | . . . . . . . . . 10 | |
26 | 25 | a1i 11 | . . . . . . . . 9 |
27 | infxpenc.x | . . . . . . . . . . 11 | |
28 | infxpenc.y | . . . . . . . . . . 11 | |
29 | 27, 28 | omf1o 7640 | . . . . . . . . . 10 |
30 | 20, 9, 29 | sylancl 662 | . . . . . . . . 9 |
31 | ondif1 7170 | . . . . . . . . . . 11 | |
32 | 7, 13, 31 | mpbir2an 920 | . . . . . . . . . 10 |
33 | 32 | a1i 11 | . . . . . . . . 9 |
34 | omcl 7205 | . . . . . . . . . 10 | |
35 | 20, 9, 34 | sylancl 662 | . . . . . . . . 9 |
36 | omcl 7205 | . . . . . . . . . 10 | |
37 | 12, 20, 36 | syl2anc 661 | . . . . . . . . 9 |
38 | fvresi 6097 | . . . . . . . . . 10 | |
39 | 13, 38 | mp1i 12 | . . . . . . . . 9 |
40 | infxpenc.l | . . . . . . . . 9 | |
41 | infxpenc.j | . . . . . . . . 9 | |
42 | 26, 30, 33, 35, 8, 37, 39, 40, 41 | oef1o 8162 | . . . . . . . 8 |
43 | oeoe 7267 | . . . . . . . . . 10 | |
44 | 8, 12, 20, 43 | syl3anc 1228 | . . . . . . . . 9 |
45 | f1oeq3 5814 | . . . . . . . . 9 | |
46 | 44, 45 | syl 16 | . . . . . . . 8 |
47 | 42, 46 | mpbird 232 | . . . . . . 7 |
48 | f1oco 5843 | . . . . . . 7 | |
49 | 24, 47, 48 | syl2anc 661 | . . . . . 6 |
50 | df-2o 7150 | . . . . . . . . . . . 12 | |
51 | 50 | oveq2i 6307 | . . . . . . . . . . 11 |
52 | 1on 7156 | . . . . . . . . . . . 12 | |
53 | omsuc 7195 | . . . . . . . . . . . 12 | |
54 | 20, 52, 53 | sylancl 662 | . . . . . . . . . . 11 |
55 | 51, 54 | syl5eq 2510 | . . . . . . . . . 10 |
56 | om1 7210 | . . . . . . . . . . . 12 | |
57 | 20, 56 | syl 16 | . . . . . . . . . . 11 |
58 | 57 | oveq1d 6311 | . . . . . . . . . 10 |
59 | 55, 58 | eqtrd 2498 | . . . . . . . . 9 |
60 | 59 | oveq2d 6312 | . . . . . . . 8 |
61 | oeoa 7265 | . . . . . . . . 9 | |
62 | 8, 20, 20, 61 | syl3anc 1228 | . . . . . . . 8 |
63 | 60, 62 | eqtrd 2498 | . . . . . . 7 |
64 | f1oeq2 5813 | . . . . . . 7 | |
65 | 63, 64 | syl 16 | . . . . . 6 |
66 | 49, 65 | mpbid 210 | . . . . 5 |
67 | oecl 7206 | . . . . . . 7 | |
68 | 8, 20, 67 | syl2anc 661 | . . . . . 6 |
69 | infxpenc.z | . . . . . . 7 | |
70 | 69 | omxpenlem 7638 | . . . . . 6 |
71 | 68, 68, 70 | syl2anc 661 | . . . . 5 |
72 | f1oco 5843 | . . . . 5 | |
73 | 66, 71, 72 | syl2anc 661 | . . . 4 |
74 | f1of 5821 | . . . . . . . . . 10 | |
75 | 1, 74 | syl 16 | . . . . . . . . 9 |
76 | 75 | feqmptd 5926 | . . . . . . . 8 |
77 | f1oeq1 5812 | . . . . . . . 8 | |
78 | 76, 77 | syl 16 | . . . . . . 7 |
79 | 1, 78 | mpbid 210 | . . . . . 6 |
80 | 75 | feqmptd 5926 | . . . . . . . 8 |
81 | f1oeq1 5812 | . . . . . . . 8 | |
82 | 80, 81 | syl 16 | . . . . . . 7 |
83 | 1, 82 | mpbid 210 | . . . . . 6 |
84 | 79, 83 | xpf1o 7699 | . . . . 5 |
85 | infxpenc.t | . . . . . 6 | |
86 | f1oeq1 5812 | . . . . . 6 | |
87 | 85, 86 | ax-mp 5 | . . . . 5 |
88 | 84, 87 | sylibr 212 | . . . 4 |
89 | f1oco 5843 | . . . 4 | |
90 | 73, 88, 89 | syl2anc 661 | . . 3 |
91 | f1oco 5843 | . . 3 | |
92 | 3, 90, 91 | syl2anc 661 | . 2 |
93 | infxpenc.g | . . 3 | |
94 | f1oeq1 5812 | . . 3 | |
95 | 93, 94 | ax-mp 5 | . 2 |
96 | 92, 95 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 e. wcel 1818 { crab 2811
\ cdif 3472 C_ wss 3475 c0 3784 <. cop 4035 class class class wbr 4452
e. cmpt 4510 cid 4795
con0 4883 suc csuc 4885 X. cxp 5002
`' ccnv 5003 |` cres 5006 o. ccom 5008
--> wf 5589 -1-1-onto-> wf1o 5592 ` cfv 5593 (class class class)co 6296
e. cmpt2 6298 com 6700
c1o 7142
c2o 7143
coa 7146
comu 7147
coe 7148
cmap 7439
cfsupp 7849 ccnf 8099 |
This theorem is referenced by: infxpenc2lem2 8418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-2o 7150 df-oadd 7153 df-omul 7154 df-oexp 7155 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fsupp 7850 df-oi 7956 df-cnf 8100 |
Copyright terms: Public domain | W3C validator |