MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc Unicode version

Theorem infxpenc 8416
Description: A canonical version of infxpen 8413, by a completely different approach (although it uses infxpen 8413 via xpomen 8414). Using Cantor's normal form, we can show that respects equinumerosity (oef1o 8162), so that all the steps of ( ) ( ) (2 ) ( 2) can be verified using bijections to do the ordinal commutations. (The assumption on can be satisfied using cnfcom3c 8171.) (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.)
Hypotheses
Ref Expression
infxpenc.1
infxpenc.2
infxpenc.3
infxpenc.4
infxpenc.5
infxpenc.6
infxpenc.k
infxpenc.h
infxpenc.l
infxpenc.x
infxpenc.y
infxpenc.j
infxpenc.z
infxpenc.t
infxpenc.g
Assertion
Ref Expression
infxpenc
Distinct variable groups:   , ,   , ,   ,N,   , ,   , , , ,   , ,   , ,

Proof of Theorem infxpenc
StepHypRef Expression
1 infxpenc.6 . . . 4
2 f1ocnv 5833 . . . 4
31, 2syl 16 . . 3
4 infxpenc.4 . . . . . . . 8
5 f1oi 5856 . . . . . . . . 9
65a1i 11 . . . . . . . 8
7 omelon 8084 . . . . . . . . . . 11
87a1i 11 . . . . . . . . . 10
9 2on 7157 . . . . . . . . . 10
10 oecl 7206 . . . . . . . . . 10
118, 9, 10sylancl 662 . . . . . . . . 9
129a1i 11 . . . . . . . . . 10
13 peano1 6719 . . . . . . . . . . 11
1413a1i 11 . . . . . . . . . 10
15 oen0 7254 . . . . . . . . . 10
168, 12, 14, 15syl21anc 1227 . . . . . . . . 9
17 ondif1 7170 . . . . . . . . 9
1811, 16, 17sylanbrc 664 . . . . . . . 8
19 infxpenc.3 . . . . . . . . 9
2019eldifad 3487 . . . . . . . 8
21 infxpenc.5 . . . . . . . 8
22 infxpenc.k . . . . . . . 8
23 infxpenc.h . . . . . . . 8
244, 6, 18, 20, 8, 20, 21, 22, 23oef1o 8162 . . . . . . 7
25 f1oi 5856 . . . . . . . . . 10
2625a1i 11 . . . . . . . . 9
27 infxpenc.x . . . . . . . . . . 11
28 infxpenc.y . . . . . . . . . . 11
2927, 28omf1o 7640 . . . . . . . . . 10
3020, 9, 29sylancl 662 . . . . . . . . 9
31 ondif1 7170 . . . . . . . . . . 11
327, 13, 31mpbir2an 920 . . . . . . . . . 10
3332a1i 11 . . . . . . . . 9
34 omcl 7205 . . . . . . . . . 10
3520, 9, 34sylancl 662 . . . . . . . . 9
36 omcl 7205 . . . . . . . . . 10
3712, 20, 36syl2anc 661 . . . . . . . . 9
38 fvresi 6097 . . . . . . . . . 10
3913, 38mp1i 12 . . . . . . . . 9
40 infxpenc.l . . . . . . . . 9
41 infxpenc.j . . . . . . . . 9
4226, 30, 33, 35, 8, 37, 39, 40, 41oef1o 8162 . . . . . . . 8
43 oeoe 7267 . . . . . . . . . 10
448, 12, 20, 43syl3anc 1228 . . . . . . . . 9
45 f1oeq3 5814 . . . . . . . . 9
4644, 45syl 16 . . . . . . . 8
4742, 46mpbird 232 . . . . . . 7
48 f1oco 5843 . . . . . . 7
4924, 47, 48syl2anc 661 . . . . . 6
50 df-2o 7150 . . . . . . . . . . . 12
5150oveq2i 6307 . . . . . . . . . . 11
52 1on 7156 . . . . . . . . . . . 12
53 omsuc 7195 . . . . . . . . . . . 12
5420, 52, 53sylancl 662 . . . . . . . . . . 11
5551, 54syl5eq 2510 . . . . . . . . . 10
56 om1 7210 . . . . . . . . . . . 12
5720, 56syl 16 . . . . . . . . . . 11
5857oveq1d 6311 . . . . . . . . . 10
5955, 58eqtrd 2498 . . . . . . . . 9
6059oveq2d 6312 . . . . . . . 8
61 oeoa 7265 . . . . . . . . 9
628, 20, 20, 61syl3anc 1228 . . . . . . . 8
6360, 62eqtrd 2498 . . . . . . 7
64 f1oeq2 5813 . . . . . . 7
6563, 64syl 16 . . . . . 6
6649, 65mpbid 210 . . . . 5
67 oecl 7206 . . . . . . 7
688, 20, 67syl2anc 661 . . . . . 6
69 infxpenc.z . . . . . . 7
7069omxpenlem 7638 . . . . . 6
7168, 68, 70syl2anc 661 . . . . 5
72 f1oco 5843 . . . . 5
7366, 71, 72syl2anc 661 . . . 4
74 f1of 5821 . . . . . . . . . 10
751, 74syl 16 . . . . . . . . 9
7675feqmptd 5926 . . . . . . . 8
77 f1oeq1 5812 . . . . . . . 8
7876, 77syl 16 . . . . . . 7
791, 78mpbid 210 . . . . . 6
8075feqmptd 5926 . . . . . . . 8
81 f1oeq1 5812 . . . . . . . 8
8280, 81syl 16 . . . . . . 7
831, 82mpbid 210 . . . . . 6
8479, 83xpf1o 7699 . . . . 5
85 infxpenc.t . . . . . 6
86 f1oeq1 5812 . . . . . 6
8785, 86ax-mp 5 . . . . 5
8884, 87sylibr 212 . . . 4
89 f1oco 5843 . . . 4
9073, 88, 89syl2anc 661 . . 3
91 f1oco 5843 . . 3
923, 90, 91syl2anc 661 . 2
93 infxpenc.g . . 3
94 f1oeq1 5812 . . 3
9593, 94ax-mp 5 . 2
9692, 95sylibr 212 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  =wceq 1395  e.wcel 1818  {crab 2811  \cdif 3472  C_wss 3475   c0 3784  <.cop 4035   class class class wbr 4452  e.cmpt 4510   cid 4795   con0 4883  succsuc 4885  X.cxp 5002  `'ccnv 5003  |`cres 5006  o.ccom 5008  -->wf 5589  -1-1-onto->wf1o 5592  `cfv 5593  (class class class)co 6296  e.cmpt2 6298   com 6700   c1o 7142   c2o 7143   coa 7146   comu 7147   coe 7148   cmap 7439   cfsupp 7849   ccnf 8099
This theorem is referenced by:  infxpenc2lem2  8418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-inf2 8079
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-int 4287  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-se 4844  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-isom 5602  df-riota 6257  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6701  df-1st 6800  df-2nd 6801  df-supp 6919  df-recs 7061  df-rdg 7095  df-seqom 7132  df-1o 7149  df-2o 7150  df-oadd 7153  df-omul 7154  df-oexp 7155  df-er 7330  df-map 7441  df-en 7537  df-dom 7538  df-sdom 7539  df-fin 7540  df-fsupp 7850  df-oi 7956  df-cnf 8100
  Copyright terms: Public domain W3C validator