Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inrab2 | Unicode version |
Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.) |
Ref | Expression |
---|---|
inrab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2816 | . . 3 | |
2 | abid2 2597 | . . . 4 | |
3 | 2 | eqcomi 2470 | . . 3 |
4 | 1, 3 | ineq12i 3697 | . 2 |
5 | df-rab 2816 | . . 3 | |
6 | inab 3765 | . . . 4 | |
7 | elin 3686 | . . . . . . 7 | |
8 | 7 | anbi1i 695 | . . . . . 6 |
9 | an32 798 | . . . . . 6 | |
10 | 8, 9 | bitri 249 | . . . . 5 |
11 | 10 | abbii 2591 | . . . 4 |
12 | 6, 11 | eqtr4i 2489 | . . 3 |
13 | 5, 12 | eqtr4i 2489 | . 2 |
14 | 4, 13 | eqtr4i 2489 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
e. wcel 1818 { cab 2442 { crab 2811
i^i cin 3474 |
This theorem is referenced by: iooval2 11591 fzval2 11704 smuval2 14132 smueqlem 14140 dfphi2 14304 ordtrest 19703 ordtrest2lem 19704 ordtrestNEW 27903 ordtrest2NEWlem 27904 itg2addnclem2 30067 dmatALTbas 33002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rab 2816 df-v 3111 df-in 3482 |
Copyright terms: Public domain | W3C validator |