MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inrab2 Unicode version

Theorem inrab2 3770
Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.)
Assertion
Ref Expression
inrab2
Distinct variable group:   ,

Proof of Theorem inrab2
StepHypRef Expression
1 df-rab 2816 . . 3
2 abid2 2597 . . . 4
32eqcomi 2470 . . 3
41, 3ineq12i 3697 . 2
5 df-rab 2816 . . 3
6 inab 3765 . . . 4
7 elin 3686 . . . . . . 7
87anbi1i 695 . . . . . 6
9 an32 798 . . . . . 6
108, 9bitri 249 . . . . 5
1110abbii 2591 . . . 4
126, 11eqtr4i 2489 . . 3
135, 12eqtr4i 2489 . 2
144, 13eqtr4i 2489 1
Colors of variables: wff setvar class
Syntax hints:  /\wa 369  =wceq 1395  e.wcel 1818  {cab 2442  {crab 2811  i^icin 3474
This theorem is referenced by:  iooval2  11591  fzval2  11704  smuval2  14132  smueqlem  14140  dfphi2  14304  ordtrest  19703  ordtrest2lem  19704  ordtrestNEW  27903  ordtrest2NEWlem  27904  itg2addnclem2  30067  dmatALTbas  33002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-v 3111  df-in 3482
  Copyright terms: Public domain W3C validator