MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inrot Unicode version

Theorem inrot 3712
Description: Rotate the intersection of 3 classes. (Contributed by NM, 27-Aug-2012.)
Assertion
Ref Expression
inrot

Proof of Theorem inrot
StepHypRef Expression
1 in31 3711 . 2
2 in32 3709 . 2
31, 2eqtri 2486 1
Colors of variables: wff setvar class
Syntax hints:  =wceq 1395  i^icin 3474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-in 3482
  Copyright terms: Public domain W3C validator