Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inrot | Unicode version |
Description: Rotate the intersection of 3 classes. (Contributed by NM, 27-Aug-2012.) |
Ref | Expression |
---|---|
inrot |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in31 3711 | . 2 | |
2 | in32 3709 | . 2 | |
3 | 1, 2 | eqtri 2486 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 i^i cin 3474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 |
Copyright terms: Public domain | W3C validator |