Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intgru | Unicode version |
Description: The intersection of a family of universes is a universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
intgru |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 461 | . . 3 | |
2 | intex 4608 | . . 3 | |
3 | 1, 2 | sylib 196 | . 2 |
4 | dfss3 3493 | . . . . 5 | |
5 | grutr 9192 | . . . . . 6 | |
6 | 5 | ralimi 2850 | . . . . 5 |
7 | 4, 6 | sylbi 195 | . . . 4 |
8 | trint 4560 | . . . 4 | |
9 | 7, 8 | syl 16 | . . 3 |
10 | 9 | adantr 465 | . 2 |
11 | grupw 9194 | . . . . . . . . . 10 | |
12 | 11 | ex 434 | . . . . . . . . 9 |
13 | 12 | ral2imi 2845 | . . . . . . . 8 |
14 | vex 3112 | . . . . . . . . 9 | |
15 | 14 | elint2 4293 | . . . . . . . 8 |
16 | 14 | pwex 4635 | . . . . . . . . 9 |
17 | 16 | elint2 4293 | . . . . . . . 8 |
18 | 13, 15, 17 | 3imtr4g 270 | . . . . . . 7 |
19 | 18 | imp 429 | . . . . . 6 |
20 | 19 | adantlr 714 | . . . . 5 |
21 | r19.26 2984 | . . . . . . . . . 10 | |
22 | grupr 9196 | . . . . . . . . . . . 12 | |
23 | 22 | 3expia 1198 | . . . . . . . . . . 11 |
24 | 23 | ral2imi 2845 | . . . . . . . . . 10 |
25 | 21, 24 | sylbir 213 | . . . . . . . . 9 |
26 | vex 3112 | . . . . . . . . . 10 | |
27 | 26 | elint2 4293 | . . . . . . . . 9 |
28 | prex 4694 | . . . . . . . . . 10 | |
29 | 28 | elint2 4293 | . . . . . . . . 9 |
30 | 25, 27, 29 | 3imtr4g 270 | . . . . . . . 8 |
31 | 15, 30 | sylan2b 475 | . . . . . . 7 |
32 | 31 | ralrimiv 2869 | . . . . . 6 |
33 | 32 | adantlr 714 | . . . . 5 |
34 | elmapg 7452 | . . . . . . . . . 10 | |
35 | 14, 34 | mpan2 671 | . . . . . . . . 9 |
36 | 2, 35 | sylbi 195 | . . . . . . . 8 |
37 | 36 | ad2antlr 726 | . . . . . . 7 |
38 | intss1 4301 | . . . . . . . . . . . 12 | |
39 | fss 5744 | . . . . . . . . . . . 12 | |
40 | 38, 39 | sylan2 474 | . . . . . . . . . . 11 |
41 | 40 | ralrimiva 2871 | . . . . . . . . . 10 |
42 | gruurn 9197 | . . . . . . . . . . . . . 14 | |
43 | 42 | 3expia 1198 | . . . . . . . . . . . . 13 |
44 | 43 | ral2imi 2845 | . . . . . . . . . . . 12 |
45 | 21, 44 | sylbir 213 | . . . . . . . . . . 11 |
46 | 15, 45 | sylan2b 475 | . . . . . . . . . 10 |
47 | 41, 46 | syl5 32 | . . . . . . . . 9 |
48 | 26 | rnex 6734 | . . . . . . . . . . 11 |
49 | 48 | uniex 6596 | . . . . . . . . . 10 |
50 | 49 | elint2 4293 | . . . . . . . . 9 |
51 | 47, 50 | syl6ibr 227 | . . . . . . . 8 |
52 | 51 | adantlr 714 | . . . . . . 7 |
53 | 37, 52 | sylbid 215 | . . . . . 6 |
54 | 53 | ralrimiv 2869 | . . . . 5 |
55 | 20, 33, 54 | 3jca 1176 | . . . 4 |
56 | 55 | ralrimiva 2871 | . . 3 |
57 | 4, 56 | sylanb 472 | . 2 |
58 | elgrug 9191 | . . 3 | |
59 | 58 | biimpar 485 | . 2 |
60 | 3, 10, 57, 59 | syl12anc 1226 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 e. wcel 1818
=/= wne 2652 A. wral 2807 cvv 3109
C_ wss 3475 c0 3784 ~P cpw 4012 { cpr 4031
U. cuni 4249 |^| cint 4286 Tr wtr 4545
ran crn 5005 --> wf 5589 (class class class)co 6296
cmap 7439
cgru 9189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-tr 4546 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-map 7441 df-gru 9190 |
Copyright terms: Public domain | W3C validator |